Dark matter haloes may form via nearly-
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Fuzzy dark matter and the

Schrodinger-Newton Equations

Dark matter holds together large astrophysical objects like galaxies and galactic
clusters today. Dark matter haloes are gravitationally-bound clumps of dark matter
that seeded the collapse of baryonic matter into these large structures in the early
Universe.

The nature of dark matter is notoriously mysterious. One candidate is fuzzy dark
matter: self-gravitating, ultra-light bosons, which can be modelled by the
Schrodinger-Newton system of equations (SNE),
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NLS eq for bosons
Poisson eq for Gravity

The cubic NLS (eq (1) with V = |y|?) exhibits waves, particle/energy cascades,
condensates and turbulence. We conjecture that the SNE has similar
phenomenology. We therefore investigate the weakly-nonlinear limit of the SNE, to
examine how dark matter haloes could build up from a background of incoherent
fluctuations.

Fig 1. Whirlpool galaxy and companion (M51a and b)

Image credits: NASA, ESA, S. Beckwith (STScl) and the Hubble Heritage Team (STScl/AURA)

Wave turbulence of the SNE

Wave Turbulence studies large ensembles of weakly-nonlinear waves in Fourier
space (Y(x,t) = P (t)). In this limit we can derive a wave kinetic equation which

describes the time evolution of the wave spectrum ny ~ (Y k),
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Resonance conditions 612 = 6(k; + k; — k3 — ky) §(wi?) = (w1 + wy — w3 — wy)
4-wave interaction coeff W13 = GTm (A1234 + Apq34 + Aqpaz + Apga3) :

Dispersion relation

A1231 = o S k)

Eq (3) has two adiabatic invariants that are preserved as the spectrum evolves:

Particles N = [y dK particle flux n through k-space (4)
Energy E = [wyny dK energy flux e

and stationary spectra:

Rayleigh-Jeans (RJ) — thermal equilibrium (equipartition) nﬁ] = u+ka

Equipartition of particles
Equipartition of energy

ny o kO
nyZ o k=2

Kolmogorov-Zakharov (KZ) — cascade of invariants

Particle cascade ntV o« k1
Energy cascade nff o k=573

Fj@rtoft argument for cascade directions

Consider the system forced at scale wy (E injected at rate €, N injected at rate n)
and dissipated at widely separated scales (wide inertial range) in steady state

Large-scale Forcing Small-scale
dissipation dissipation

The factor of w in (4) means we must have € ~ wn at all scales, particularly € ~ wm.

If E is dissipated at w,i, at rate e then N must be dissipated at rate
€/Wmin ~ N W/ Wmin >N i.€. greater than the injection rate. Therefore E must be
mainly dissipated at wy,x. Similarly N must be mainly dissipated at wpj,.

This strongly constrains the flux directions:
N — large scales (n < 0), while E — small scales (¢ > 0).
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KZ spectra predict the "wrong”

cascade directions

How do the fluxes n and € behave on power-law spectra ny ~ k™* ?

Steep spectra: e,n > 0forx » 1 , €,n < 0for x < 0 (fluxes flatten steep spectra).
KZ spectra: e = 0 on nf", n = 0 on nf." (spectra of pure N and E flux respectively).
RJ spectra: e =n =0 onni" and ntf (no flux in equilibrium).

In between, continuity implies the fluxes have the signs as shown in Fig 2.

n(x)

TN FN FE TE
0 1 5/3 2

€(x)

Fig 2 Particle flux n and energy flux € as a function of spectral index x (i.e. ny ~ k=*). On FN
spectrum n > 0 and on FE spectrum € < 0, contradicting the Fjgrtoft argument.

The fluxes are in the wrong direction c.f. Fjgrtoft argument for both KZ spectra.
Therefore KZ spectra cannot match any finite inertial range.

Differential approximation model predicts

warm cascades

As the KZ spectra cannot be realised, the flux must be carried by a steady-state
spectrum close to the thermal RJ spectrum. This can be seen in a simplified model
that has the same qualitative behaviour as eq (3). This is the differential
approximation model (DAM), derived by assuming wy = w = W, = ws3:

0:(0?n) = 9,,R ,  R=w""?n%,,(1/n)

Within the DAM, the fluxes are

n= —awR , €e=R— waR (5)
Putting a weakly-perturbed thermal spectrum n = ret0(a) into egs (5) predicts
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i.e. the thermodynamic potentials are set by the fluxes and dissipation scales.

The result is a warm cascade — a nearly-thermal spectrum that carries the flux
from the forcing to the dissipation scales. This is shown in Fig 3.
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Fig 3 Dual warm cascade of N and E. Fluxes are carried in the directions predicted by the Fjartoft
argument, on a spectrum close to thermal (except for compact fronts near the dissipation scales.

Conclusions and outlook

Warm cascades carry particles to large scale in the SNE.

This could be a mechanism for the accumulation of dark matter at large scales in
the early Universe, and relate to structure formation.

The results from the DAM need to be made quantitative by direct numerical
simulations of the SNE.

Prospects for testing the WT of the SNE in the lab by nonlinear optics, to which
eqgs (1) and (2) also apply.



