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Dark matter holds together large astrophysical objects like galaxies and galactic 
clusters today. Dark matter haloes are gravitationally-bound clumps of dark matter 
that seeded the collapse of baryonic matter into these large structures in the early 
Universe.

The nature of dark matter is notoriously mysterious. One candidate is fuzzy dark 
matter: self-gravitating, ultra-light bosons, which can be modelled by the 
Schrödinger-Newton system of equations (SNE),

NLS eq for bosons 𝑖𝜕#𝜓 + ∇'𝜓 − 𝜓𝑉 = 0
Poisson eq for Gravity ∇'𝑉 = 𝐺𝑚 𝜓 '.

The cubic NLS (eq (1) with 𝑉 = 𝜓 ') exhibits waves, particle/energy cascades, 
condensates and turbulence. We conjecture that the SNE has similar 
phenomenology. We therefore investigate the weakly-nonlinear limit of the SNE, to 
examine how dark matter haloes could build up from a background of incoherent 
fluctuations.

Fuzzy dark matter and the 
Schrödinger-Newton Equations

Fig 1. Whirlpool galaxy and companion (M51a and b) 
Image credits: NASA, ESA, S. Beckwith (STScI) and the Hubble Heritage Team (STScI/AURA)
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Wave Turbulence studies large ensembles of weakly-nonlinear waves in Fourier 
space (𝜓 𝐱, 𝑡 → 2𝜓𝐤(𝑡)). In this limit we can derive a wave kinetic equation which 
describes the time evolution of the wave spectrum 𝑛𝐤 ~ 2𝜓𝐤 2𝜓𝐤∗ ,
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Eq (3) has two adiabatic invariants that are preserved as the spectrum evolves:
Particles 𝑁 = ∫𝑛𝐤 𝑑𝐤 particle flux 𝜂 through 𝐤-space
Energy 𝐸 = ∫𝜔𝐤𝑛𝐤 𝑑𝐤 energy flux 𝜖

and stationary spectra:
Rayleigh-Jeans (RJ) – thermal equilibrium (equipartition)  𝑛𝐤

VW = X
YZ[𝐤

Equipartition of particles 𝑛𝐤X\ ∝ 𝑘^

Equipartition of energy 𝑛𝐤X_ ∝ 𝑘L'

Kolmogorov-Zakharov (KZ) – cascade of invariants
Particle cascade 𝑛𝐤`\ ∝ 𝑘L>
Energy cascade 𝑛𝐤`_ ∝ 𝑘La/=

Wave turbulence of the SNE
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Consider the system forced at scale 𝜔c (𝐸 injected at rate 𝜖, 𝑁 injected at rate 𝜂)
and dissipated at widely separated scales (wide inertial range) in steady state 

𝜔def ≪ 𝜔c ≪ 𝜔dhi

The factor of𝜔 in (4) means we must have 𝜖 ∼ 𝜔𝜂 at all scales, particularly 𝜖 ∼ 𝜔c𝜂.

If 𝐸 is dissipated at 𝜔def at rate 𝜖 then 𝑁 must be dissipated at rate 
⁄𝜖 𝜔def ∼ ⁄𝜂 𝜔c 𝜔def ≫𝜂 i.e. greater than the injection rate. Therefore 𝐸 must be 

mainly dissipated at 𝜔dhi. Similarly 𝑁 must be mainly dissipated at 𝜔def.

This strongly constrains the flux directions: 
𝑁 → large scales (𝜂 < 0), while 𝐸 → small scales (𝜖 > 0).

Fjørtoft argument for cascade directions
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How do the fluxes 𝜂 and 𝜖 behave on power-law spectra 𝑛𝐤 ∼ 𝑘Lp ?
Steep spectra: 𝜖, 𝜂 > 0 for 𝑥 ≫ 1 ,  𝜖, 𝜂 < 0 for 𝑥 ≪ 0 (fluxes flatten steep spectra). 
KZ spectra: 𝜖 = 0 on 𝑛𝐤`\,  𝜂 = 0 on 𝑛𝐤`_ (spectra of pure 𝑁 and 𝐸 flux respectively).
RJ spectra: 𝜖 = 𝜂 = 0 on 𝑛𝐤X\ and 𝑛𝐤X_ (no flux in equilibrium).
In between, continuity implies the fluxes have the signs as shown in Fig 2.

The fluxes are in the wrong direction c.f. Fjørtoft argument for both KZ spectra.
Therefore KZ spectra cannot match any finite inertial range.

KZ spectra predict the “wrong” 
cascade directions

Fig 2 Particle flux 𝜂 and energy flux 𝜖 as a function of spectral index 𝑥 (i.e. 𝑛𝐤 ∼ 𝑘Lp). On FN 
spectrum 𝜂 > 0 and on FE spectrum 𝜖 < 0, contradicting the Fjørtoft argument. 
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As the KZ spectra cannot be realised, the flux must be carried by a steady-state 
spectrum close to the thermal RJ spectrum. This can be seen in a simplified model 
that has the same qualitative behaviour as eq (3). This is the differential 
approximation model (DAM), derived by assuming 𝜔𝐤 ≈ 𝜔> ≈ 𝜔' ≈ 𝜔=:

𝜕# 𝜔>/'𝑛 = 𝜕[[𝑅 , 𝑅 = 𝜔t/'𝑛E𝜕[[ 1/𝑛

Within the DAM, the fluxes are

𝜂 = −𝜕[𝑅 , 𝜖 = 𝑅 − 𝜔𝜕[𝑅

Putting a weakly-perturbed thermal spectrum 𝑛 = X
YZ[Zu([) into eqs (5) predicts
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i.e. the thermodynamic potentials are set by the fluxes and dissipation scales.

The result is a warm cascade – a nearly-thermal spectrum that carries the flux
from the forcing to the dissipation scales. This is shown in Fig 3.

Differential approximation model predicts 
warm cascades

(5)
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Fig 3 Dual warm cascade of 𝑁 and 𝐸. Fluxes are carried in the directions predicted by the Fjørtoft
argument, on a spectrum close to thermal (except for compact fronts near the dissipation scales.

• Warm cascades carry particles to large scale in the SNE.
• This could be a mechanism for the accumulation of dark matter at large scales in 

the early Universe, and relate to structure formation.
• The results from the DAM need to be made quantitative by direct numerical 

simulations of the SNE.
• Prospects for testing the WT of the SNE in the lab by nonlinear optics, to which 

eqs (1) and (2) also apply.

Conclusions and outlook


