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Fermi-Pasta-Ulam-Tsingou system

N identical masses connected by anharmonic springs moving in one
dimension. Studied in 1953, using numerical simulations (MANIAC).

System did not relax to equilibrium; rather, a recurrence behaviour
was observed.

The result sparked the research field of nonlinear science: integrable
systems such as Korteweg de Vries were related to this problem.

(Credits: A. L. Burin et al., Entropy 2019, 21(1), 51)



Hamiltonian for the pα ` βq FPUT model
The Hamiltonian for a chain of N identical particles of mass m, connected
by identical anharmonic springs, can be expressed as an unperturbed
Hamiltonian, H0, plus two perturbative terms, H3, H4:

H “ H0 `H3 `H4 (1)

with

H0 “

N
ÿ

j“1

ˆ

1

2m
p2j ` κ

1

2
pqj ´ qj`1q

2

˙

,

H3 “
α

3

N
ÿ

j“1

pqj ´ qj`1q
3,

H4 “
β

4

N
ÿ

j“1

pqj ´ qj`1q
4.

(2)

qjptq is the displacement of the particle j from its equilibrium position and
pjptq is the associated momentum.



Equations of motion for the original variables qjptq

m:qj “ κpqj`1 ` qj´1 ´ 2qjq

` α
“

pqj`1 ´ qjq
2 ´ pqj ´ qj´1q

2
‰

` β
“

pqj`1 ´ qjq
3 ´ pqj ´ qj´1q

3
‰

, j “ 0, . . . , N ´ 1

This is known as the α` β-FPUT model.

q0 “ qN q´1 “ qN “ 0 q´1 “ q0, qN´1 “ qN

We will consider periodic boundary conditions from here on.



Equations in Fourier space: modular momentum condition

Qk “
1

N

N´1
ÿ

j“0

qje
´i2πkj{N , Pk “

1

N

N´1
ÿ

j“0

pje
´i2πkj{N ,

H

N
“

P 2
0

2m
`

1

2m

N´1
ÿ

k“1

`

|Pk|
2 `m2 ω2

k |Qk|
2
˘

`
1

3

N´1
ÿ

k1,k2,k3“1

Ṽ1,2,3Q1Q2Q3 δ1`2`3

`
1

4

N´1
ÿ

k1,k2,k3,k4“1

T̃1,2,3,4Q1Q2Q3Q4 δ1`2`3`4,

Dispersion relation:

ωk “ ωpkq “ 2

c

κ

m
sinpπk{Nq , 1 ď k ď N ´ 1 (3)

δ1`2`3 “ δpk1 ` k2 ` k3 mod Nq, (Kronecker δ), leading to the
modular-arithmetic condition k1 ` k2 ` k3 “ 0 mod N .



Equations of motion in Fourier space
The equations of motion take the following form:

:Q1`ω
2
1Q1 “

1

m

ÿ

k2,k3

Ṽ1,2,3Q2Q3δ1`2`3`
1

m

ÿ

k2,k3,k4

T̃1,2,3,4Q2Q3Q4δ1`2`3`4,

where all the sums on kj go from 1 to N ´ 1.
These are exact equations, representing perturbed harmonic oscillators.
Normal modes: introduced to diagonalise the Hamiltonian

Qk “
1

?
2mωk

pak ` a
˚
N´kq.

Equations of motion for the normal modes:

i
Ba1
Bt

“ ωk1a1 `
ÿ

k2,k3

pV123a2a3δ1´2´3 `W123a
˚
2a3δ1`2´3 ` Z123a

˚
2a
˚
3δ1`2`3q`

`
ÿ

k2,k3,k4

pR1234 a2a3a4δ1´2´3´4 ` S1234 a
˚
2a3a4δ1`2´3´4

` T1234 a
˚
2a
˚
3a4δ1`2`3´4 ` U1234 a

˚
2a
˚
3a
˚
4δ1`2`3`4q .



Dynamical systems approach

i
Ba1
Bt

“ ωk1a1 `
ÿ

k2,k3

pV123a2a3δ1´2´3 `W123a
˚
2a3δ1`2´3 ` Z123a

˚
2a
˚
3δ1`2`3q`

`
ÿ

k2,k3,k4

pR1234 a2a3a4δ1´2´3´4 ` S1234 a
˚
2a3a4δ1`2´3´4

` T1234 a
˚
2a
˚
3a4δ1`2`3´4 ` U1234 a

˚
2a
˚
3a
˚
4δ1`2`3`4q .

There are three interesting regimes:

Weakly nonlinear regime: amplitudes are small, so higher-order terms
are small. Exact resonances dominates. Normal form theory.
(Poincaré, Birkhoff, Arnold, etc.) [Bustamante et al., CNSNS 73, 437
(2019)]
Finite amplitudes: the terms of different orders are comparable.
Bifurcations and chaos dominate. Precession resonance.
[Bustamante et al., PRL 113, 084502 (2014)] (cf. Critical Balance).
Large amplitudes: the higher order term dominates. System recovers
re-scaling symmetries. Synchronisation of phases. [Murray &
Bustamante, JFM 850, 624 (2018)]



Weakly nonlinear regime: Dominated by exact resonances

i
Ba1
Bt

“ ωk1a1 `
ÿ

k2,k3

pV123a2a3δ1´2´3 `W123a
˚
2a3δ1`2´3 ` Z123a

˚
2a
˚
3δ1`2`3q`

`
ÿ

k2,k3,k4

pR1234 a2a3a4δ1´2´3´4 ` S1234 a
˚
2a3a4δ1`2´3´4

` T1234 a
˚
2a
˚
3a4δ1`2`3´4 ` U1234 a

˚
2a
˚
3a
˚
4δ1`2`3`4q .

In the limit of small amplitudes, the only relevant interactions are those
interactions between wavenumbers that satisfy the momentum equation

k1 ˘ k2 ˘ . . .˘ kM “ 0 pmod Nq

and the frequency resonance equation

sinpπk1{Nq ˘ . . .˘ sinpπkM{Nq “ 0.

These are called M -wave resonances, where M ě 3 is an integer.

The unknowns are the integers 1 ď k1, . . . , kM ď N ´ 1.
When M “ 3 there are no solutions to these equations.
Therefore one can eliminate those interactions via a near-identity
transformation.



Normal form variables: Near-identity transformation

a1 “ b1 `
ÿ

k2,k3

´

A
p1q
1,2,3b2b3δ1´2´3 `A

p2q
1,2,3b

˚
2b3δ1`2´3 `A

p3q
1,2,3b

˚
2b
˚
3δ1`2`3

¯

`

`
ÿ

k2,k3,k4

pB
p1q
1,2,3,4b2b3b4δ1´2´3´4 `B

p2q
1,2,3,4b

˚
2b3b4δ1`2´3´4`

B
p3q
1,2,3,4b

˚
2b
˚
3b4δ1`2`3´4 `B

p4q
1,2,3,4b

˚
2b
˚
3b
˚
4δ1`2`3`4q ` . . .

and select the matrices A
piq
1,2,3, B

piq
1,2,3,4 in order to remove non-resonant

interactions.
For example, the choice

A
p1q
1,2,3 “

V1,2,3
ω3 ` ω2 ´ ω1

, A
p2q
1,2,3 “

2V1,2,3
ω3 ´ ω2 ´ ω1

, A
p3q
1,2,3 “

V1,2,3
´ω3 ´ ω2 ´ ω1

.

eliminates the 3-wave interactions, leading to a system of equations for the
normal form variables b1, . . . , bN´1 (next slide):



Normal form equations of motion

i
Bb1
Bt
“ ωk1b1 `

ÿ

k2,k3,k4

pR1234 b2b3b4δ1´2´3´4 ` S1234 b
˚
2b3b4δ1`2´3´4

` T1234 b
˚
2b
˚
3b4δ1`2`3´4 ` U1234 b

˚
2b
˚
3b
˚
4δ1`2`3`4q `Op|b|5q .

Does the transformation converge? Open question in general. See
“On the convergence of the normal form transformation in discrete
Rossby and drift wave turbulence” by Walsh & Bustamante,
arXiv:1904.13272

Can we eliminate some of the 4-wave interactions? Yes, provided
they are not resonant.

The transformation created extra interactions: 5-wave, 6-wave,
etc. Therefore the question about resonances is relevant for all
possible M waves.



FPUT exact resonances: Diophantine equations

Definition (M -wave resonance)

Let N be the number of particles of the FPUT system. An M -wave
resonance is a list (i.e., a multi-set) tk1, . . . , kS ; kS`1, . . . , kS`T u with
S, T ą 0, S ` T “M and 1 ď kj ď N ´ 1 for all j “ 1, . . . ,M , that is a
solution of the momentum conservation and frequency resonance
conditions

k1 ` . . .` kS “ kS`1 ` . . .` kS`T pmod Nq,

ωpk1q ` . . .` ωpkSq “ ωpkS`1q ` . . .` ωpkS`T q,

where ωpkq “ 2 sinpπk{Nq.

Physically, this corresponds to the conversion process of S waves into T
waves. The Hamiltonian term is proportional to bk1 ¨ ¨ ¨ bkSb

˚
kS`1

¨ ¨ ¨ b˚kS`T
.



Preliminary: Forbidden M -wave resonances

Theorem (Forbidden Processes)

Resonant processes converting 1 wave to M ´ 1 waves or M ´ 1 waves to
1 wave do not exist, for any M ‰ 2. Also, resonant processes converting 0
wave to M waves or M waves to 0 wave do not exist, for any M ą 0.

Proof. The function ωpkq “ 2| sinpπk{Nq| is strictly subadditive for k P R,
k R NZ:

ωpk1 ` k2q ă ωpk1q ` ωpk2q, k1, k2 P RzNZ .

Therefore, for example, resonant processes converting 2 waves into 1 wave
(or vice versa) are not allowed because this would require
ωpk1 ` k2q “ ωpk1q ` ωpk2q, which is not possible. Similarly, resonant
processes converting M ´ 1 waves into 1 wave (or vice versa) are not
allowed because subadditivity implies

ωpk1 ` . . .` kpq ă ωpk1q ` . . .` ωpkpq, k1, . . . , kp P RzNZ,

for any p ě 2.



What is new about 4-wave, 5-wave and 6-wave resonances?

New methods to construct M -wave resonances: Pairing-off method
& Cyclotomic method.

The appropriate method to be used depends on properties of the
number of particles N and the number of waves M .

The case of 4-wave resonances has been studied extensively and all
solutions are known.

4-wave resonances are integrable and thus they do not produce
energy mixing across the Fourier spectrum: one needs to go to higher
orders.

The case of 5-wave resonances is completely new and relies on the
existence of cyclotomic polynomials (to be defined below).

The case of 6-wave resonances is also new and both methods
(pairing-off and cyclotomic) are used to construct them.

We do not need to search for M -wave resonances with M ą 6
because these will provide less relevant corrections to the system’s
behaviour.



Pairing-off method to obtain 2S-wave resonances
converting S waves to S waves (for any N)

k1 ` . . .` kS “ kS`1 ` . . .` kS`S pmod Nq,

ωpk1q ` . . .` ωpkSq “ ωpkS`1q ` . . .` ωpkS`Sq,

Due to the identities ωpkq “ ωpN ´ kq, k “ 1, . . . , N ´ 1, one can
“pair-off” incoming and outgoing waves, as follows:

kS`j “ N ´ kj , j “ 1, . . . , S.

In this way, the frequency resonance condition is automatically solved
“by pairs” since ωpkS`jq “ ωpkjq.

The momentum conservation condition leads to a single equation:

k1 ` . . .` kS “
Nν

2
,

where the integer variable ν satisfies 2S{N ď ν ă 3S{2 and is
introduced as a parameterisation of the momentum conservation
condition.



The need for a more general method illustrated with the
case N “ 6

When the number of particles N is an odd prime or a power of 2,
any M -wave resonance must be of pairing-off form, and in particular
M must be even.

In the case when N (number of particles) is arbitrary, the pairing-off
solutions to the 2L-wave resonant conditions (with 2L ě 6) do not
exhaust all possible solutions.

For example, in the case N “ 6 (six particles) there is a 6-wave
resonance that is not of pairing-off form:

1`1`5`5 “ 3`3 pmod 6q , ωp1q`ωp1q`ωp5q`ωp5q “ ωp3q`ωp3q .

The frequency resonance condition is satisfied because of the identity

ωp1q ` ωp5q “ ωp3q, or sinπ{6` sin 5π{6 “ sin 3π{6 ,

which is reminiscent of a triad resonance. What is the origin of this
identity? The answer is given in terms of the 2N -th root of unity
and the so-called cyclotomic polynomials.



Writing the resonance conditions in terms of real
polynomials on the p2Nqth root of unity
We write the dispersion relation as a complex exponential:

ωpkq ” 2 sinpπk{Nq “ ´i
´

ζk ´ ζ´k
¯

,

where

ζ “ exp

ˆ

i π

N

˙

is a primitive 2N -th root of unity: ζ2N “ 1.
In terms of ζ, the frequency resonance condition is

pζk1´ζ´k1q`. . .`pζkS´ζ´kS q “ pζkS`1´ζ´kS`1q`. . .`pζkS`T´ζ´kS`T q .

Recalling that ζ is a unit complex number, it follows that ζ´kj is the
complex conjugate of ζkj , so the above is equivalent to the statement that
a polynomial is real:

ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R .

In other words, solving the frequency resonance conditions is an easy
task: it amounts to finding all real polynomials on the variable ζ.



ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R , ζ “ exp

ˆ

i π

N

˙

.

Example (Pairing-off resonances)

The pairing-off resonances correspond to a “pairing-off” real polynomial,
made out of real binomials: by setting S “ T and kS`j “ N ´ kj we
obtain

ρpζq “ ζk1 ` . . .` ζkS ´
´

ζN´k1 ` . . .` ζN´kS
¯

“

´

ζk1 ` ζ´k1
¯

` . . .`
´

ζkS ` ζ´kS
¯

,

which is real, pair by pair.



ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R , ζ “ exp

ˆ

i π

N

˙

.

Example (Cyclotomic resonance for N “ 6)

This resonance corresponds to an element of the kernel of the above map,
since, for N “ 6 we have

ζ “ exp

ˆ

i π

6

˙

ùñ ζ ` ζ5 ´ ζ3 “ 0 .

Thus, the resonance corresponds to S “ 4, T “ 2 with wavenumbers
k1 “ k2 “ 1, k3 “ k4 “ 5, and k5 “ k6 “ 3 so we obtain

ρpζq “ ζk1 ` ζk2 ` ζk3 ` ζk4 ´ ζk5 ´ ζk6 “ 2
´

ζk1 ` ζk3 ´ ζk5
¯

“ 0,

again real.



Momentum condition: Resonant FPUT polynomial

ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R , ζ “ exp

ˆ

i π

N

˙

.

The momentum condition is easily seen to be

ρ1p1q “ 0 pmod Nq.

Definition: a resonant FPUT polynomial as a polynomial ρpxq of the
above form, such that ρpζq is real and such that ρ1p1q “ 0 pmod Nq.

Knowing a resonant FPUT polynomial is equivalent to finding an
M -wave resonance.

The defining equations are linear so we want to find a “basis” for the
resonant FPUT polynomials.



The cyclotomic method: Constructing resonant FPUT
polynomials of short length (1/2)

ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R , ζ “ exp

ˆ

i π

N

˙

.

Theorem

Suppose 3|N (i.e., N is divisible by 3). Then the polynomials

fnpxq “ xn ´ xn`N{3 ` xn`2N{3, n “ 1, . . . , N{3´ 1

are real FPUT polynomials in the sense that fnpζq “ 0.

Notice that ωpnq ´ ωpn`N{3q ` ωpn` 2N{3q “ 0, reminiscent of a
resonant triad.
We can add to this polynomial any pair-off polynomial. This produces
8 possible combinations. For example, adding xN´n ´ xn gives

gnpxq “ xN´n ´ xn`N{3 ` xn`2N{3, n “ 1, . . . , N{3´ 1.



The cyclotomic method: Constructing resonant FPUT
polynomials of short length (2/2)

ρpζq ” ζk1 ` . . .` ζkS ´ pζkS`1 ` . . .` ζkS`T q P R , ζ “ exp

ˆ

i π

N

˙

.

The momentum condition, ρ1p1q “ 0 pmod Nq, is not satisfied by
polynomials with three terms. We need to add extra terms, again of
pairing-off form, but which do not cancel:

Theorem

Suppose 3|N (i.e., N is divisible by 3). Then the polynomials

fn,qpxq “ xn ´ xn`N{3 ` xn`2N{3 ` xq ´ xN´q

are resonant FPUT polynomials if and only if

n`N{3` 2q “ 0 pmod Nq.

Notice that there will be 8 versions of this theorem.



Octahedra (3 � N and N odd): n “ 2, 4, . . . , N3 ´ 1.
"

n,
2N

3
` n,

N

3
´
n

2
;
N

3
` n,

2N

3
`
n

2

*

"

n,
N

3
´ n,

n

2
;
N

3
` n,N ´

n

2

*

"

n,
2N

3
` n,N ´

3n

2
;
2N

3
´ n,

3n

2

*

"

n,
N

3
´ n,

2N

3
´
n

2
;
2N

3
´ n,

N

3
`
n

2

*
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N ´ n,
2N

3
` n,

N

3
`
n

2
;
N

3
` n,

2N

3
´
n

2
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N ´ n,
N

3
´ n,N ´

3n

2
;
N

3
` n,

3n

2
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N ´ n,
2N

3
` n,N ´

n

2
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2N

3
´ n,

n

2
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"

N ´ n,
N

3
´ n,

2N

3
`
n

2
;
2N

3
´ n,

N

3
´
n

2

*



Octahedra (3 � N and N odd): n “ 2, 4, . . . , N3 ´ 1.

Each octahedron is a “cluster” of 14 nonlinearly interacting Fourier
modes: n{2, n, 3n{2, n{2`N{3, n`N{3, n{2` 2N{3, n` 2N{3 and
their “pair-off conjugates”.



Octahedra (3 � N and N odd): n “ 2, 4, . . . , N3 ´ 1.

Divisibility: n{2, n, 3n{2, n{2`N{3, n`N{3, n{2` 2N{3, n` 2N{3
share the same divisors (apart from powers of 2 and 3).



Summary of clusters

N ą 6 5 ffl N 5 � N
3 ffl N No Quintets. No Quintets.

tN6 u Clusters: 1 Extra Cluster:
3 � N ^ 6 ffl N 8 Quintets Each; 2 Quintets;

Total: 8tN6 u Quintets. Total: 8tN6 u` 2 Quintets.
1
2

`

N
6 ´ 1

˘

Clusters: 1 Extra Cluster:
6 � N ^ 12 ffl N 16 Quintets Each; 2 Quintets;

Total: 8pN6 ´ 1q Quintets. Total: 8pN6 ´ 1q ` 2 Quintets.
N
12 ´ 1 Clusters: 1 Extra Cluster:

12 � N 16 Quintets Each; 2 Quintets;
1 Cluster: 6 Quintets;
Total: 16pN12 ´ 1q ` 6 Quintets. Total: 16pN12 ´ 1q ` 6` 2 Quintets.

Table: Summary of cases of 5-wave resonances for N ą 6, regarding the counting of
octahedron clusters and total number of quintets.



Connectivity across Clusters: Superclusters.
Example: N “ 75

Figure: Super-cluster S75 for N “ 3 ¨ 52 “ 75. All 10 vertices in the component Sp1q75 (left)
have 14 wavenumbers each. The greatest common divisor amongst the wavenumbers in this
component is 1. In the component S˚75 (right) the vertices numbered 5 and 10 have 12
wavenumbers each, which are strongly connected since their connecting edge has label 12. The
vertices numbered 13 and 14 have 5 wavenumbers each. The greatest common divisor
amongst the wavenumbers in this component is 5.



The number of disjoint components depends on the
number of divisors of N . Example: N “ 420

Figure: Colour online. Super-cluster S420 for N “ 22 ¨ 3 ¨ 5 ¨ 7 “ 420. All 24 vertices in the

component Sp1q420 (top left) and all 6 vertices in the component Sp5q420 (bottom left) have 22
wavenumbers each. The greatest common divisor amongst the wavenumbers in each
component is: 1 (top left), 5 (bottom left), 7 (bottom right) and 35 (top right).



Types of M -wave resonances as a function on N

N ď 6 Lowest-order Resonances Type of Resonance

3 6-wave Pairing-off
4 4-wave & 6-wave Pairing-off
5 6-wave Pairing-off
6 4-wave & 6-wave Pairing-off & Cyclotomic

N ą 6 Lowest-order Resonances Type of Resonance

1 pmod 6q p7, 13, 19, . . .q 6-wave Pairing-off
2 pmod 6q p8, 14, 20, . . .q 4-wave & 6-wave Pairing-off
3 pmod 6q p9,15,21, . . .q 5-wave Cyclotomic
4 pmod 6q p10, 16, 22, . . .q 4-wave & 6-wave Pairing-off
5 pmod 6q p11, 17, 23, . . .q 6-wave Pairing-off
0 pmod 6q p12,18,24, . . .q 4-wave & 5-wave Pairing-off & Cyclotomic

Table: Study of lowest order of FPUT irreducible resonances that are not of Birkhoff normal
form (in other words, resonances that effectively exchange energy amongst modes), as a
function of N . The cases admitting 5-wave resonances are highlighted in boldface. 4-wave
resonances are always in so-called resonant Birkhoff normal form, which do not produce effective
energy transfers throughout the whole spectrum of modes. In contrast, 5- and 6-wave
irreducible resonances cannot be simplified in terms of resonant Birkhoff normal forms, because
they mix energies over a wide range of modes.



Summary of exact results

Considering N ě 6,

When N is prime or a power of 2, only pairing-off resonances exist,
and they transform S waves into S waves.

The cyclotomic method allows for the explicit construction of 5-wave
resonances when N is divisible by 3.

4-wave resonances lead to disjoint clusters, for any N .

5-wave resonances are inter-connected in octahedra
(connection is via common modes).

These octahedra are further connected into superclusters
(connection is via common modes).

The number of disjoint superclusters is roughly equal to the
number of divisors of N which are not divisible by 3 or 2.

6-wave resonances exist for any N . They lead to one big
interconnected cluster.



Sensitivity of 5-wave superclusters with respect to N :
Does the N Ñ 8 limit make sense?
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Looking forward: Thermalisation

4-wave resonances alone do not produce thermalisation.

The divisibility of N could play an important role: if 5-waves
dominated, we would obtain a different scaling for thermalisation time
with respect to 6-wave dominated thermalisation.

Are superclusters well connected enough to allow thermalisation via
5-wave resonances?

Boundary conditions are important: for fixed (or free) boundary
conditions, there are simply no resonances! (For any N).

Convergence of the normal form transformation should be
investigated.
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