Norwich - October 30, 2019

Joint work with S. Zuccher (U. Verona) & M. Foresti (UniMiB)

- Gross-Pitaevskii (1961-1963) equation: $\psi = \psi(\mathbf{x}, t)$
- $\frac{\partial \psi}{\partial t} = \frac{i}{2} \nabla^2 \psi + \frac{i}{2} (1 |\psi|^2) \psi, \quad \text{with} \quad |\psi|^2 \to 1 \text{ as } |\mathbf{x}| \to \infty .$
- Madelung (1926) transformation:

$$\psi = \sqrt{\rho} \exp(i\chi) \begin{cases} \rho = |\psi|^2 \\ \mathbf{u} = \nabla\chi \end{cases}$$

• Hydrodynamic interpretation of GPE

(Anderson et al. 1995)

Helicity and linking numbers

• Helicity H:

$$H = \int_{V(\boldsymbol{\omega})} \mathbf{u} \cdot \boldsymbol{\omega} \, dV,$$
where $\boldsymbol{\omega} = \nabla \times \mathbf{u}$ with $\nabla \cdot \mathbf{u} = 0$ in \mathbb{R}^3 .

• Under GPE (Salman 2017; Kedia et al. 2018):

$$H_{GPE} = \Gamma \oint_{\mathcal{L}} \mathbf{u} \cdot d\mathbf{l} = \Gamma \oint_{\mathcal{L}} \nabla \chi \cdot d\mathbf{X} = 0$$
.

• Theorem (Moffatt 1969; Moffatt & Ricca 1992). Let \mathcal{L}_n be a disjoint union of *n* vortex tubes in an ideal fluid.

$$H_{GPE} = \int_{V(\mathcal{U})} \mathbf{u} \cdot \mathbf{\omega} \, dV = \sum_{i \neq j} Lk_{ij} \Gamma_i \Gamma_j + \sum_i Lk_i \Gamma_i^2 \qquad \Gamma_1 \qquad \Gamma_2 \qquad \Gamma_3 \qquad \Gamma_3 \qquad \Gamma_4 \qquad \Gamma_4 \qquad \Gamma_4 \qquad \Gamma_5 \quad \Gamma_$$

Cascade process of Hopf link ($\Gamma = 1$)

Reconnection process of iso-phase surface

Reconnection process of iso-phase surface

Twist analysis by isophase ribbon construction

t = 38

t = 47

t = 57

Writhe and twist contributions (Zuccher & Ricca PRE 2017)

Individual writhe and twist contributions

Writhe remains conserved across anti-parallel reconnection: $Wr(\mathcal{L}_1 \cup \mathcal{L}_2) = Wr(\mathcal{L}_1 \# \mathcal{L}_2)$ (Laing et al. 2015)

- Total writhe and twist decrease monotonically during the process.

Interpretation of momentum in terms of weighted area

Consider the linear momentum (per unit density):

$$\mathbf{P} = \frac{1}{2} \int_{V(\boldsymbol{\omega})} \mathbf{X} \times \boldsymbol{\omega} \, dV = \frac{\Gamma}{2} \oint_{\mathcal{L}} \mathbf{X} \times d\mathbf{X} = \Gamma \int_{\mathcal{A}(\mathcal{L})} \mathbf{\hat{e}}_P \, dS = cst.$$

where $\mathcal{A}(\mathcal{L})$ is the area projected along $\mathbf{\hat{e}}_P$ bounded by \mathcal{L} .

Consider the P_i component of **P** along the *i*-direction (i = x, y, z), and $A_i = A(\vec{\Lambda}_i)$ the area of the projected graph $\vec{\Lambda}_i$ along *i*.

The weighted area \mathcal{A}_i is given by

$$\mathcal{A}_i = \sum \mathcal{I}_j A_j$$

where

$$\mathcal{I}_j = \mathcal{I}(R_j) = \sum_{r \in \{\hat{\rho} \cap \vec{\partial} R_j\}} \epsilon_r$$

and $A_{ji} = A_{ji}(R_j)$ denotes the
standard area of R_j .

Linear and angular momentum by weighted area information • Theorem (Ricca, 2008; 2012). The linear and angular momentum P and M of a vortex link of circulation Γ can be expressed in terms of weighted areas of the projected graph regions by $\mathbf{P} = \frac{1}{2} \int_{V(U)} \mathbf{X} \times \boldsymbol{\omega} \, dV = \Gamma \vec{\mathcal{A}} \,,$ \mathbb{R}^3 $\mathbf{M} = \frac{1}{3} \int_{V(\boldsymbol{\omega})} \mathbf{X} \times (\mathbf{X} \times \boldsymbol{\omega}) \, dV = \frac{2}{3} \Gamma \boldsymbol{\zeta} \cdot \vec{\mathcal{A}}, \qquad \boldsymbol{\zeta}$ where $\vec{\mathcal{A}} = (\mathcal{A}_x, \mathcal{A}_y, \mathcal{A}_z), \, \boldsymbol{\zeta} \cdot \vec{\mathcal{A}} = (\zeta_x \mathcal{A}_x, \zeta_y \mathcal{A}_y, \zeta_z \mathcal{A}_z)$ and $\mathcal{A}_i = \mathcal{A}(ec{\Lambda}_i)$ (i=x,y,z) denotes the weighted area of the projected graph $\vec{\Lambda}_i$ along the *i*-direction.

 \mathbb{R}^2

• Corollary. The components of linear and angular momentum of a vortex tangle can be computed in terms of weighted areas of the projected graph regions of the tangle.

Weighted area computation: t = 35 (Zuccher & Ricca PRE 2019)

x-y plane sub-regions area and index				index	z-x plane sub-regions area and index			<i>y-z</i> plane sub-regions area and index		
R	201.35		+1	R ₁	13.26	+1	R	199.48	+1	
R ₂	18.14			0	R ₂	13.93	-1	R ₂	22.85	0
R ₃	0.94			+1	R ₃	3.78	0	R ₃	0.34	-1
R4	0.39		-1	R4	0.83	-1	R4	0.86	+1	
				R ₅	1.70	+1	R ₅	0.00	-1	
+1	0	-1			\mathbf{R}_6	3.15	+1			
					R ₇	2.18	-1			

Weighted area computation: t = 37 (Zuccher & Ricca PRE 2019)

sub-regi	<i>x-y</i> plane ons area and	index	<i>z-x</i> plane sub-regions area and index			<i>y-z</i> plane sub-regions area and index		
R ₁	201.77	+1	R ₁	14.81	+1	R ₁	159.18	+1
R ₂	0.057	-1	R ₂	15.63	-1	R ₂	37.58	+1
R ₃	1.0419	+1	R ₃	0.10	-1	R ₃	0.80	-1
			R ₄	0.29	-1	R ₄	1.00	+1
			R ₅	2.44	+1			
+1 0	-1		R ₆	2.25	+1			
			R ₇	1.54	-1			

Resultant momentum of Hopf link and reconnecting rings

Production of Hopf link and trefoil knot from unlinked loops

see movie

(Zuccher & Ricca 2019, to be submitted)

induction of phase twist Tw = 1 on vortex ring superposition of phase twist Tw = 1 on vortex ring induction of phase twist Tw = 1 on vortex ring

Case B: twist superposition

- Theorem (Foresti & Ricca 2019). Let \mathcal{L}_1 be a vortex ring of $\Gamma_1 = 1$. A rectilinear, central vortex \mathcal{L}_2 of $\Gamma_2 = 1$ can co-exists if and only if \mathcal{L}_1 and \mathcal{L}_2 are linked so that $Tw_1 + Tw_2 = \pm 2$.
 - **Proof.** (i) If \mathcal{L}_1 and \mathcal{L}_2 are linked $\implies Tw_1 + Tw_2 = \pm 2$: since $\Gamma_1 = \Gamma_2 = 1$, $H = 0 \implies Lk_{tot} = 0$ $0 = 2Lk_{12} + (Wr_1 + Tw_1) + (Wr_2 + Tw_2)$ $Wr_1 = 0$, $Wr_2 = 0$; $Lk_{12} = +1$ $0 = 2Lk_{12} + Tw_1 + Tw_2$ $\implies Tw_1 + Tw_2 = \pm 2$. ╋ We can prove that the lowest energy twist state is given by $|Tw_1| = 1 \implies |Tw_2| = 1$.

- (ii) If there is $Tw_1 \Rightarrow \exists \mathcal{L}_2$ such that \mathcal{L}_1 and \mathcal{L}_2 are linked: suppose we have only $\mathcal{L}_1 = \mathcal{L}$ and for simplicity $Tw_1 = Tw = 1$.
- Twist. The twist Tw of a unit vector $\hat{\mathbf{P}}$ on a curve \mathcal{L} is defined by $Tw = \frac{1}{2\pi} \oint_{\mathcal{C}} \left(\hat{\mathbf{P}} \times \frac{d\hat{\mathbf{P}}}{ds} \right) \cdot \hat{\mathbf{T}} ds$
- Zero-twist condition. The unit vector $\hat{\mathbf{P}}$ does not rotate along \mathcal{L} if and only if it is Fermi-Walker (FW)-transported along \mathcal{L} , i.e.

$$\mathcal{L} \xrightarrow{\hat{\mathbf{Q}} \hat{\mathbf{P}}}_{\hat{\mathbf{T}}} \frac{D_{\text{FW}} \hat{\mathbf{P}}}{Ds} = \frac{d\hat{\mathbf{P}}}{ds} - (\hat{\mathbf{P}} \cdot \hat{\mathbf{T}}) \frac{d\hat{\mathbf{T}}}{ds} + \left(\hat{\mathbf{P}} \cdot \frac{d\hat{\mathbf{T}}}{ds}\right) \hat{\mathbf{T}} = 0 \quad , \forall s \in \mathcal{L} .$$

Twist injection by phase perturbation

• Tw = 0: dispersion relation for Kelvin waves

$$\psi_0 \Rightarrow \psi = \psi_0 + \psi_1 + \dots,$$

 $\psi_1 = \lambda e^{i(\mathbf{k} \cdot \mathbf{R} - \nu t)}, \quad |\lambda| \ll 1.$
 $\Rightarrow \nu = \frac{1}{2}(k^2 - 1) \Rightarrow \nabla \nu \propto k = |\mathbf{k}|$

• $Tw \neq 0$: dispersion relation in presence of winding $w \in \mathbb{Z}$ $\psi = e^{iw\phi}\psi_0 + \lambda e^{i(k\cdot R - \nu t)}$; after linearinzing we obtain $\frac{\partial \psi_1}{\partial t} = \frac{i}{2} \left(\nabla + \frac{iw}{R} \hat{\mathbf{e}}_{\phi} \right)^2 \psi_1 + \frac{i}{2} \psi_1$, with a new dispersion relation given by:

$$\nu = \frac{1}{2} \left(\mathbf{k} + \frac{w}{R} \hat{\mathbf{e}}_{\phi} \right)^2 - \frac{1}{2} \implies \nabla \nu \propto (k; w)$$

(Foresti & Ricca, PRE 2019)