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o Gross-Pitaevskii (1961-1963) equation: r = (X, )

5 . .
8—2‘0 = %Vzw + %(1 — W)Y, with |V]* — 1 as |x| = o0 .

e Madelung (1926) transformation:

— 12
Y = JPexplix) {p =V
u=Vy

o Hvdrodynamic interpretation of GPE (Anderson et al. 1995)



Helicity and linking numbers

o Helicity H :

H: U’de9 r
V(W)

where @ =V xu with V-u =0 in R3.

e Under GPE (Salman 2017; Kedia et al. 2018):
HGPEZF%u-dIZF%VX°dX=O.
£ L

e Theorem (Moffatt 1969; Moffatt & Ricca 1992). Let L, be a
disjoint union of n vortex tubes in an ideal fluid.

H — cwdV =SNLkETT LkT?
oPE /M/w S LT+ ST .
£0

= Y LkTT,+ Y (Wr+Tw)T;

(Salman 2017) & : - T,



Cascade process of Hopf link (I" = 1)
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Reconnection process of iso-phase surface
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Reconnection process of iso-phase surface
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Twist analysis
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Writhe and twist contributions (Zuccher & Ricca PRE 2017)
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Individual writhe and twist contributions
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11 | e Writhe remains conserved
across anti-parallel reconnection:

Wr(L1U L) = Wr(L1#L2) |

0.5F
(Laing et al. 2015)
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e Twist remains conserved 0.6

across anti-parallel reconnection:

Tw(ﬁl U ﬁz) — T’w(ﬁl#ﬁz) .

e Total writhe and twist decrease 19! 2 3
monotonically during the process. . | gﬁ
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Interpretation of momentum in terms of weighted area

Consider the linear momentum (per unit density):

1 I
P=- Xxde:—%Xxdle“/ épdS = cst.
2 Jy(w) 2 Jc A(L)

where A(ﬁ) is the area projected along €p bounded by L .

Consider the P; component of P along the i-direction (i=z,y,2),
and A; = .A(A,,) the area of the projected graph \; along i.

The weighted area A; is given by ,
A = ZI iAji
T, =I(R;))= » &

andAj,i = Aji(Rj) denotes the o N
standard area of R i A(A%)

where




Linear and angular momentum by weighted area information

o Theorem (Ricca, 2008; 2012). The linear and angular

momentum P and M of a vortex link of circulation 1 can be

expressed in terms of weighted areas of the projected graph

regions by 1 .
P=-— X xwdV =TA,
2 Jvw)
1 2 i
M= - XX (Xxw)dV=-I¢-A,

where A= (A.’z:a -Ay;Az) ’ C ) A — (CxAzca CyAya Cz'Az)
and A; = A(Kz) (i =z,y,2) denotes the weighted
area of the projected graph KZ along the i-direction. ﬂ

A

e Corollary. The components of linear and

angular momentum of a vortex tangle can

be computed in terms of weighted areas of

the projected graph regions of the tangle. K QO




Weighted area computation: t = 35 (Zuccher & Ricca PRE 2019)

x-y plane z-x plane y-z plane
sub-regions area and index sub-regions arca and index sub-regions area and index
R, | 201.35 +1 R, 13.26 +1 R, 199.48 +1
R, | 1814 0 R. 1393 -1 R, 22 85 0
R, | 094 -1 R, 378 0 R, 0.34 -1
R, | D39 -1 R. 0.R3 -1 R. 086 +1
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Weighted area computation: t = 3’/ (Zuccher & Ricca PRE 2019)

x-y plane

sub-regions area and index

sub-regions area and index

z-x plane

-z plane

sub-regions area and index

R, 201.77 +1 | R, 14.81 | +1 R, 159.18 +1
R, 0.057 -1 R, 1563 | -1 R, 37.58 +1
R, 1.0419 +1 | R, 0.10 -1 R, 0.80 -1
R, 0.29 -1 R, 1.00 +1

R, 2.44 +1

2.25 +1

1.54 -1
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Resultant momentum of Hopf link and reconnecting rings
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Production of Hopf link and trefoil knot from unlinked loops

Hopf link
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see movie
(Zuccher & Ricca 2019, to be submitted)



Physical effects of phase twist (Zuccher & Ricca FDR 2018)

o Case A: twist induction o Case B: twist superposition

phase contour in the
(y-z) plane
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Case A: twist induction

induction of phase twist Tw =1 on vortex ring

e Biot-Savart induction law:

r jg T(X*) x (x — X*)
L

— d
i x—xp

ux) =

I
lug| =
2m(R — a)

M — 2 ~ (.49

v (=R - 5)




Case B: twist superposition

o Theorem (Foresti & Ricca 2019). Let [ be a vortex ring of
['y=1. A rectilinear, central vortex [, of 1’5 =1 can co-exists
if and only if £ and [, are linked so that Tw,+Tw,=172.

Proof.
(i) If L, and [, are linked = Tw;+Tw,=+2:

0=2Lki,+ (Wr;+Tw,) + (Wry + Tw,)
WI”l:O, Wrzz();

Lk12 — +1
0= 2Lk12+ TWI + TW2

= Tw+Tw,y,=+2 .

We can prove that the lowest
energy twist state is given by

Twl=1= IlTw,l=1.



(ii) If there is Tw, = 3 L2 such that L1 and L2 are linked:
suppose we have only L1 = L and for simplicity Tw,=Tw=1 .

e Twist. The twist Tw of a unit vector P on a curve [ is defined

by 1 . dP\ .
Tw=— P x — |- -Tds
21 g( ds) )

o Zero-twist condition. The unit vector P does not rotate along [
if and only if it is Fermi-Walker (FW)-transported along [, i.e

DewP  dP T (. dT)\xA
kil :d__(P T)d_+(P d_)T=0,Vs€£.

G P Ds ds

T

L

o Phase-twist. Let U be the ribbon unit vector on the isophase
X = cst.: D U R L
ki =R: xU=Q(TxU);
Ds
dU 27m 2mm

7 eg-l—c(BxU) eg—CCOSQT

H_} \ v )
Uy u;

ds




Twist injection by phase perturbation

e 1w =0 _: dispersion relation for Kelvin waves [~

Yo = Y=Yo+yYP1+...,

U = A ®ETD N« 1
1

= 1/:5(11:2—1) = Vyo(k;:|k|

o Iw #0 : dispersion relation in presence of winding w € 7

] '(k-R—vt
U= e‘w¢lﬁo + et ’ ); after linearinzing we obtain

oy, i iw, \ i — ™
L — |V 4+ = _
T 2( +Re¢) Vit sy,

with a new dispersion relation given bvy:

1(k+w")2 : Vv o (k; w)
= — — - = .
V= & 5 v (k;w)

(Foresti & Ricca, PRE 2019)




