Norwich - October 30, 2019

Joint work with S. Zuccher (U. Verona) & M. Foresti (UniMiB)

- Gross-Pitaevskii (1961-1963) equation: $\psi = \psi(\mathbf{x}, t)$
- $\frac{\partial \psi}{\partial t} = \frac{i}{2} \nabla^2 \psi + \frac{i}{2} (1 |\psi|^2) \psi, \text{ with } |\psi|^2 \to 1 \text{ as } |\mathbf{x}| \to \infty.$
- Madelung (1926) transformation:

$$
\psi = \sqrt{\rho} \exp(i\chi) \quad \begin{cases} \rho = |\psi|^2 \\ \mathbf{u} = \nabla \chi \end{cases}
$$

• Hydrodynamic interpretation of GPE

(Anderson et al. 1995)

Helicity and linking numbers

• Helicity
$$
H
$$
:
\n
$$
H = \int_{V(\omega)} \mathbf{u} \cdot \omega dV,
$$
\nwhere $\omega = \nabla \times \mathbf{u}$ with $\nabla \cdot \mathbf{u} = 0$ in \mathbb{R}^3 .

Under GPE (Salman 2017; Kedia et al. 2018) :

$$
H_{GPE} = \Gamma \oint_{\mathcal{L}} \mathbf{u} \cdot d\mathbf{l} = \Gamma \oint_{\mathcal{L}} \nabla \chi \cdot d\mathbf{X} = 0.
$$

3

• Theorem *(Moffatt 1969; Moffatt & Ricca 1992). Let* \mathcal{L}_n *be a disjoint union of n vortex tubes in an ideal fluid.*

$$
H_{GPE} = \int_{V(\boldsymbol{\omega})} \boldsymbol{\Lambda} \cdot \boldsymbol{\omega} dV = \sum_{i \neq j} L k_{ij} \Gamma_i \Gamma_j + \sum_i L k_i \Gamma_i^2
$$

\n(Salman 2017)
$$
= \sum_{i \neq j} L k_{ij} \Gamma_i \Gamma_j + \sum_i (Wr + Tw) \Gamma_i^2.
$$

Cascade process of Hopf link $(\Gamma = 1)$

Reconnection process of iso-phase surface

Reconnection process of iso-phase surface

Twist analysis by isophase ribbon construction

 $t=38$

 $t=47$

 $t=57$

Writhe and twist contributions (Zuccher & Ricca PRE 2017)

Individual writhe and twist contributions

- *Twist remains conserved across anti-parallel reconnection: .*
- *Total writhe and twist decrease monotonically during the process.*

 Writhe remains conserved across anti-parallel reconnection: (Laing et al. 2015) $Wr(\mathcal{L}_1 \cup \mathcal{L}_2) = Wr(\mathcal{L}_1 \# \mathcal{L}_2)$.

Interpretation of momentum in terms of weighted area

Consider the linear momentum (per unit density):

$$
\mathbf{P} = \frac{1}{2} \int_{V(\boldsymbol{\omega})} \mathbf{X} \times \boldsymbol{\omega} dV = \frac{\Gamma}{2} \oint_{\mathcal{L}} \mathbf{X} \times d\mathbf{X} = \Gamma \int_{\mathcal{A}(\mathcal{L})} \hat{\mathbf{e}}_{P} dS = cst.
$$

where $A(L)$ is the area projected along $\hat{\mathbf{e}}_P$ bounded by L .

Consider the P_i component of P along the <i>i-direction ($i = x, y, z$), and $A_i = A(\vec{\Lambda}_i)$ the area of the projected graph $\vec{\Lambda}_i$ along *i*.

The weighted area A_i is given by

$$
\mathcal{A}_i = \sum \mathcal{I}_j A_{ji}
$$

where

$$
\mathcal{I}_j = \mathcal{I}(R_j) = \sum_{r \in \{\hat{\rho} \cap \vec{\partial}R_j\}} \epsilon_r
$$
\nand $A_{ji} = A_{ji}(R_j)$ denotes the standard area of R_j .

Linear and angular momentum by weighted area information Theorem (Ricca, 2008; 2012). The linear and angular momentum **P** *and* **M** *of a vortex link of circulation* Γ *can be expressed in terms of weighted areas of the projected graph regions by* $P = \frac{1}{2} \int_{V(t)} \mathbf{X} \times \boldsymbol{\omega} dV = \Gamma \vec{\mathcal{A}}$, \mathbb{R}^3 *,* where $\mathcal{A}=(\mathcal{A}_x, \mathcal{A}_y, \mathcal{A}_z)$, ζ and $A_i = A(\vec{\Lambda}_i)$ ($i = x, y, z$) denotes the weighted area of the projected graph $\vec{\Lambda}_i$ along the *i*-direction.

 \mathbb{R}^2

 Corollary. The components of linear and angular momentum of a vortex tangle can be computed in terms of weighted areas of the projected graph regions of the tangle.

Weighted area computation: t = 35 *(Zuccher & Ricca PRE 2019)*

Weighted area computation: t = 37 *(Zuccher & Ricca PRE 2019)*

Resultant momentum of Hopf link and reconnecting rings

 $\boldsymbol{\bowtie}$

 $\hat{20}$

Production of Hopf link and trefoil knot from unlinked loops

see movie

(Zuccher & Ricca 2019, to be submitted)

induction of phase twist Tw = 1 *on vortex ring*

superposition of phase twist Tw = 1 *on vortex ring* *induction of phase twist Tw* = 1 *on vortex ring*

Case B: twist superposition

- \bullet Theorem (Foresti & Ricca 2019). Let \mathcal{L}_1 be a vortex ring of $\Gamma_1 = 1$. A rectilinear, central vortex \mathcal{L}_2 of $\Gamma_2 = 1$ can co-exists *if and only if* \mathcal{L}_1 *and* \mathcal{L}_2 *are linked so that* $\mathit{Tw}_1 + \mathit{Tw}_2 = \pm~2$ *.*
	- *Proof.(i)* If \mathcal{L}_1 and \mathcal{L}_2 are linked \implies $Tw_1 + Tw_2 = \pm 2$: $\textbf{since} \;\; \Gamma_1 \!=\! \Gamma_2 \!=\! 1 \;, \; H \!=\! 0 \implies L k_{\text{tot}} \!=\! 0 \;,$ $0 = 2Lk_{12} + (Wr_1 + Tw_1) + (Wr_2 + Tw_2)$ $Wr_1 = 0$ *,* $Wr_2 = 0$ *;* $0 = 2Lk_{12} + Tw_1 + Tw_2$ $\implies Tw_1 + Tw_2 = \pm 2$. *We can prove that the lowest energy twist state is given by* ++ $|Tw_1| = 1 \implies |Tw_2| = 1$. $Lk_{12} = +1$
- (ii) If there is $Tw_{1}\Rightarrow\exists\ \mathcal{L}_{2}$ such that \mathcal{L}_{1} and \mathcal{L}_{2} are linked: *suppose we have only* $\mathcal{L}_1 = \mathcal{L}$ *and for simplicity* $Tw_1 = Tw = 1$ *.*
- \bullet Twist. The twist Tw of a unit vector $\mathbf P$ on a curve $\mathcal L$ is defined *by . .*
- \bullet Zero-twist condition. The unit vector $\mathbf{\hat{P}}$ does not rotate along $\mathbf{\mathcal{L}}$ *if and only if it is Fermi-Walker (FW)-transported along , i.e.* L

$$
\mathcal{L}\left\{\begin{array}{c}\frac{D_{\text{FW}}\hat{\mathbf{P}}}{\hat{\mathbf{Q}}_{\hat{\mathbf{P}}}} & \frac{D_{\text{FW}}\hat{\mathbf{P}}}{Ds} = \frac{d\hat{\mathbf{P}}}{ds} - (\hat{\mathbf{P}} \cdot \hat{\mathbf{T}}) \frac{d\hat{\mathbf{T}}}{ds} + \left(\hat{\mathbf{P}} \cdot \frac{d\hat{\mathbf{T}}}{ds}\right)\hat{\mathbf{T}} = 0 \quad , \ \forall s \in \mathcal{L} \, .\end{array}\right.
$$

 Phase-twist. Let be the ribbon unit vector on the isophase $\chi = \textbf{cst.}:$ $\frac{D_{\text{FW}}\hat{\mathbf{U}}}{Ds} = \mathbf{\Omega}_{\xi} \times \hat{\mathbf{U}} = \Omega(\hat{\mathbf{T}} \times \hat{\mathbf{U}})$; $\chi = constant$ *.* \mathbf{u}_ε \mathbf{u}_{θ}

Twist injection by phase perturbation

•
$$
Tw = 0
$$
: dispersion relation for Kelvin waves
\n $\psi_0 \Rightarrow \psi = \psi_0 + \psi_1 + ...$
\n $\psi_1 = \lambda e^{i(k \cdot R - vt)}, \quad |\lambda| \ll 1$.
\n $\Rightarrow \nu = \frac{1}{2} (k^2 - 1) \Rightarrow \nabla \nu \propto k = |\mathbf{k}|$

• $Tw \neq 0$: dispersion relation in presence of winding $w \in \mathbb{Z}$ $\psi = e^{iw\phi}\psi_0 + \lambda e^{i(k\cdot R - vt)}$; after linearinzing we obtain $\frac{\partial \psi_1}{\partial t} = \frac{i}{2} \left(\nabla + \frac{i w}{R} \hat{\mathbf{e}}_{\phi} \right)^2 \psi_1 + \frac{i}{2} \psi_1 ,$ *with a new dispersion relation given by:* \boldsymbol{z}

$$
v = \frac{1}{2}\left(k + \frac{w}{R}\hat{\mathbf{e}}_{\phi}\right)^{2} - \frac{1}{2} \quad \Rightarrow \quad \nabla \nu \propto (k; w) \ .
$$

1.

(Foresti & Ricca, PRE 2019)

 \blacktriangleleft