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Turbulent dispersion Shear layer instability
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Intrinsic randomness of fluids

Atmospheric Diffusion shown on a Distance-Neighbour Graph.

By Lewis F. RicHARDSON.

(Communicated by Sir Gilbert Walker, F.R.S.—Received November 7, 1925.)

The predictability of a flow which possesses many
scales of motion

By EDWARD N. LORENZ, Massachusetts Institute of Technologyt

(Manuscript received October 31, 1968, revised version December 13, 1968)
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Lorenz's 1969 conjecture

ABSTRACT

It is proposed that certain formally deterministic fluid systems which possess many
scales of motion are observationally indistinguishable from indeterministic systems;
specifically, that two states of the system differing initially by a small ‘“‘observational
error’” will evolve into two states differing as greatly as randomly chosen states of the
system within a finite time interval, which cannot be lengthened by reducing the
amplitude of the initial error. The hypothesis is investigated with a simple mathe-
matical model. An equation whose dependent variables are ensemble averages of the
“‘error energy’’ in separate scales of motion is derived from the vorticity equation which
governs two-dimensional incompressible flow. Solutions of the equation are determined
by numerical integration, for cases where the horizontal extent and total energy of the
system are comparable to those of the earth’s atomsphere.

It is found that each scale of motion possesses an intrinsic finite range of predictabi-
lity, provided that the total energy of the system does not fall off too rapidly with
decreasing wave length. With the chosen values of the constants, ‘“‘cumulus-scale”
motions can be predicted about one hour, “synoptic-scale’” motions a few days, and the
largest scales a few weeks in advance. The applicability of the model to real physical
systems, including the earth’s atmosphere, is considered.

= Intrinsic finite-time randomness.

Different from chaotic exponentiation, where
finite-time errors can be made arbitrarily small
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From Richardson’s super-diffusion ...

Az/At has a limit.

» Multiplicative diffusion process:

duplr,t) = 0, (K(D,p).  K(r) ~ r'/3

» Expect self-similar asymptotics:

w0 g () 0~

= statistical explosivity, e.g. “loss of memory”

A general and beautiful theory of “ Diffusion by Continuous Movements ~
has been given by G. I. Taylor.* It is expressed in terms of velocity.

Although this theory of Taylor’s is available, yet I think it will be a useful
adventure to try now to make a theory of diffusion without assuming that

i 3
p In (r(t)/r )

JFM 2015, with Krstulovic and Bec
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... to Spontaneous Stochasticity

‘v The modern view on Richardson’s adventure

Advection in rough velocity ensembles:

o

. dX = dv, (t,X) + v2x dW

dv, ~rt/3asr.v—0

In the joint limit v,k — 0
> X(x,v) remains truly stochastic.

> Coincident trajectories may reach separations O(1)
in finite time and almost surely.

= They are spontaneously stochastic.

Bernard, Gawedzki, Kupiainen, Le Jan, Raimond,...
6/18



Kelvin-Helmholtz instability

A=om/k AU

B ———

—Up

Linear inviscid theory:

Exponential amplification with
growth rate o(k) = Uk/2

When the perturbation scale vanishes, e.g. kK — oo,
the growth rate explodes: o(k) — oo

= Breakdown of linear theory

When the amplitude vanishes, the inviscid problem becomes ill-posed

= Singular initial-value problem
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Mathematical ambiguity of the inviscid case

+U /20—

: «—U)2

Weak solutions to the incompressible Euler equations with vortex
sheet initial data

» Initial-value problem is ill-posed

Abstract

» Infinitely many dissipative solutions

=- Can one predict the dynamics of a shear layer ?

= Is the Kelvin-Helmholtz setup spontaneously stochastic ?
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Unveiling spontaneous stochasticity

U ) 2————>

g - <« U2

Physical regularization by white noise + viscosity

Navier-Stokes evolution:

diw +u-Vw=rvAw with u=—-V=+ (A‘lw)
t=0": wi(x,y)=Ud(y) [1+rn(x)], with 5 white noise
Questions

» Is there a non-trivial limit v,k — 0 ?

» |s it random?
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Explosive separation of velocities
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In the limit n,x — 0,
the dynamics is stochastic from t = 0T

= It is spontaneously stochastic
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Universality of the dynamics

U o———>

1 «—U)2

Two different regularizations

Navier-Stokes: v,k — 0
Oiw +u-Vw=rvAw with u= -Vt (A_lw)

Brikhoff-Rott: N,;l, k—0

U
N (1+e¢ N;/z Mn)

. 1
2z = o Z [ cot[m(zn — z) ] r,,:—b

1<j<N,
J#n
Is the limiting random process dependent upon the regularization ?
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KH universality: Navier-Stokes vs Birkhoff-Rott regularization
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KH universality: Mixing length

Navier-Stokes
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KH universality: Vorticity profile

Navier-Stokes
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KH universality

: Vorticity correlation
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KH universality: Vorticity correlation
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The limiting process is independent of
the regularization

é
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Summary of the observations:

KH instability is a physical example of a spontaneously stochastic flow :
» Deterministic at t = 0 § et fovostone, REsd\§ b Pety

» Randomatt >0

= More unpredictable than chaos

The random process is
» Triggered by micro-scale fluctuations,
» Insensitive to those.

Where to chase spontaneous butterflies effects ?
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Thank you for your attention !
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A toy model of an explosive KH instability

v,k — 0
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Inverse cascade of errors

How fast two replica of a multi-scale
fluid system diverge ?

Assume

> E(k) ~ k—¢

» Local propagation k — k/2
with timescale 7(k) ~ k(e—3)/2

Then, the error reaches kK = 1 from oo at

=00 ife>3

TN/1 7(k)d log k coo ife<3

E(k)

10 100 ke
k

FIG. 1. Stationary energy spectrum E(k) (thick line) and error spectrum
E(k,1) at time 1=0.1,0.2,0.4,0.8,1.6. k;=320 is the forcing wavenumber.
In the inset we plot the compensated spectrum € *k**E(k).

Boffetta & Musacchio, PoF 2001

smooth case, e.g., 2d direct cascade

rough case, e.g., 3d direct cascade
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