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Warm turbulence in the Boltzmann equation
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Abstract – We study the single-particle distributions of three-dimensional hard-sphere gas
described by the Boltzmann equation. We focus on the steady homogeneous isotropic solutions
in thermodynamically open conditions, i.e. in the presence of forcing and dissipation. We
observe a nonequilibrium steady-state solution characterized by a warm turbulence, that is an
energy and particle cascade superimposed on the Maxwell-Boltzmann distribution. We use a
dimensional analysis approach to relate the thermodynamic quantities of the steady state with
the characteristics of the forcing and dissipation terms. In particular, we present an analytical
prediction for the temperature of the system which we show to be dependent only on the forcing
and dissipative scales. Numerical simulations of the Boltzmann equation support our analytical
predictions.
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Three-dimensional fluid turbulence is characterized by
an energy cascade process whose concept was introduced
by Richardson in 1922 and developed by Kolmogorov
in 1941 [1,2]. The idea is that if one injects energy
at some scale, creating eddies, then those eddies may
interact and create smaller and smaller eddies up to
the dissipation scale. The result is the famous power-law
Kolmogorov spectrum which corresponds to a constant
flux of energy from large to small scales. Conventional
approach to analyzing turbulent flows relies on Navier-
Stokes equations, which are mathematically complex,
having resisted most attempts at a solution for more than
a century. Recently a different approach has been proposed
based on an extended Boltzmann kinetic equation [3] for
turbulent flows. The main idea is that the turbulent eddy
interactions leading to the Kolmogorov energy cascade
can be described, analogously to particle collisions, by
statistical ensembles ruled by a turbulent kinetic equation.
On the other hand, in 1965 [4], Zakharov found that

dispersive weakly nonlinear wave systems, e.g. surface
gravity waves, may exhibit a very similar phenomenology
as fluid turbulence, i.e. a constant flux of energy towards
small scales, a direct cascade. Besides ocean waves [5],
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these cascades have been studied in a large number
of weakly nonlinear systems such as internal waves [6],
nonlinear optics [7], Bose-Einstein condensation [8–10],
magnetohydrodynamics [11]. Such regime, valid for weak
nonlinearity, is now known as weak wave turbulence and
the power-law flux carrying states are called Kolmogorov-
Zakharov (KZ) spectra. The extraordinary fact is that
the KZ solutions corresponding to the turbulent cascades
are found to be exact analytical solutions of a wave
kinetic equation which describes the evolution of the wave
spectrum. The wave kinetic equation has a structure that
resembles the classical Boltzmann equation: the evolution
of the distribution is driven by a collision integral which
conserves mass, momentum and energy.
Keeping in mind such an analogy, our aim is to address

in the present letter the following fundamental questions.
Let us consider a gas whose single-particle distribution
evolution is described by the Boltzmann equation and
suppose that we inject in the system particles with a
specific energy and remove those that reach an energy
larger/smaller than a preselected threshold. How does the
distribution function change with respect to the thermo-
dynamic equilibrium solution? How the temperature and
chemical potential will be affected by the presence of
forcing and dissipation?
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We mention here that, from a physical point of view,
the role of forcing can be played by externally produced
beams, such as neutral beam injection in tokamak
plasmas, or particles with a particular range of energy
produced by a chemical or a nuclear reaction. Dissipation
could be represented by a loss of particles via, again, a
chemical or a nuclear reaction or simply via a loss of
particles in the system when their energies are higher
than a potential barrier.
In order to answer to the aforementioned questions we

will first consider numerical simulations of the Boltzmann
equation in the homogeneous and isotropic case and then
present an argument based on dimensional analysis that
allows us to explain the numerical results and make some
predictions on the steady nonequilibrium properties of the
system. Our starting point is the homogeneous, forced and
damped Boltzmann equation

∂n1
∂t
= Icoll+F −D, with

Icoll =

∫ +∞

−∞
W 1

′2′

12 [n
′
1n
′
2−n1n2] dv2 dv′1 dv′2,

(1)

where ni ≡ n(x,vi, t) is the single-particle distribution
function and primes denote particles after the collision.
We have included a source term F and a sink D which
will be specified once the numerics are discussed. As we
consider elastic collisions, the general way to express W is

W 1
′2′

12 = σ δ(v1+v2−v′1−v′2) δ(E1+E2−E′1−E′2),
(2)

with Ei = |vi|2/2 being the kinetic energy per unit mass.
The δ-functions assure conservation of the total momen-
tum and the total kinetic energy. In this letter, we consider
the three-dimensional hard-sphere gas (σ is independent
of v) in isotropic conditions.
In the absence of forcing and dissipation any initial

condition will relax to the Maxwell-Boltzmann (MB)
distribution

nMB(E) = n0e
−E+µT =Ae−

E
T , (3)

whereA≡ n0e−
µ
T with µ and T the chemical potential and

temperature of the system, respectively. This equipartition
mechanism, consequence of the H-theorem, has been
checked as a benchmark of our numerical code. In order
to consider an open system we have then included forcing
and dissipation written in E-space. The forcing term is
constant in time and has the role of injecting particles with
energies narrowly concentrated around some value Ef , i.e.
F (E) = F if |E−Ef |< δf and zero otherwise, where F is
a positive constant. The dissipation term is implemented
as a filter which removes, at each iteration time, energy
and particles outside of the domain (Emin, Emax), i.e.
D(E) = 0 if E ∈ (Emin, Emax) and D(E) =−∞ otherwise.
In such conditions, a dimensional analysis shows that (1)

may have also solutions characterized by a constant flux of

energy and mass which corresponds to the KZ solutions.
Indeed, the particle flux η and the energy flux ϵ can be
estimated as

η= 2π

∫ E

0

∂n

∂t
E1/2 dE∼n2E7/2,

ϵ= 2π

∫ E

0

∂n

∂t
E3/2 dE∼n2E9/2.

(4)

Assuming that one of the fluxes is constant trough energy
scales, we can immediately derive the KZ solutions nη∼
E−7/4 and nϵ∼E−9/4 [12].
The results presented in this letter are found using a

numerical algorithm which has been previously described
in [13]; we will give in the following a brief summary. In the
isotropic assumption the collision integral in (1) is written
in spherical coordinates and integrated analytically over
the solid angles (note that the δ-function containing the
energy sum is independent of the angles). A change of
variable from the modulus of the velocity to the energy is
then performed. The energy space is uniformly discretized
and the collision integral is computed over a discretized
resonant manifold, that is a point grid lattice, where
the δ-condition is satisfied. The collision integral evalu-
ation is the most difficult and time-consuming part of
the algorithm because the time evolution of the homo-
geneous Boltzmann equation is then computed with a
forward Euler method choosing a time step sufficiently
small to assure the convergence. We underline that the
integral evaluation uses a “deterministic” method [14,15],
because all the possible combinations of the distribution
having different energies and satisfying the δ-condition are
considered and it differs from the Monte Carlo methods
where test particles are used. Here, the only numerical
error is due to the resolution of the lattice which should
be as wide as possible to define with sufficient points the
resonant manifold.
In our simulations the computational domain is

discretized in 501 points having ∆E = 1 and the initial
distribution is n(E, t= 0) = 0. We first consider the case
characterized by Emin = 5, Emax = 250 and the forcing
located at energies between 35 and 37. Numerical results
for the final steady states evaluated for three different
forcing amplitudes, F = 10−4, 10−5, 10−6, are presented
in fig. 1. Independently of the forcing, a stationary distrib-
ution is reached in the simulations, implying the existence
of a flux from the forcing region to the boundaries of
the domain. The steady solutions of our simulation do
not appear to be very far from the Maxwell-Boltzmann
distribution (3), which corresponds to a straight line
in a lin-log coordinates. It is clear from the plot that
the only consequence of increasing the forcing rate is to
shift upwards the curves, leaving unchanged the slopes.
This is the first indication that the temperature of the
system remains constant, independently of the forcing.
We can also compute, as a function of time, the average
energy per particle ρE/ρM , with ρM = 2π

∫
n(E)E1/2 dE
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Fig. 1: Final steady states of the Boltzmann equation (1)
obtained for different values of the forcing amplitude F .
Axes are in lin-log coordinates. Emin = 5, Emax = 250 and
Ef = 35–37.
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Fig. 2: Time evolution of the average energy per particle for
different forcing amplitudes. Axes are in log-lin coordinates.
Emin = 5, Emax = 250 and Ef = 35–37.

and ρE = 2π
∫
n(E)E3/2 dE. As shown in fig. 2, for large

times this quantity reaches a unique value for the three
simulations considered. We recall that for a pure MB
distribution such ratio is proportional to 3/2 of the
temperature of the system.
We have not observed KZ solutions in our simulations.

The reason is that the interactions are non-local in scales,
as already pointed out in [16]: the collision integral does
not converge for such solutions. Moreover, the energy and
particle flux directions, [17], associated to such solutions,
are opposite to the ones predicted by the Fjørtoft argu-
ment which imposes that the energy should have a direct
cascade, i.e. from low to high energies, while particle an
inverse one [13]. It is important to underline that for
other interaction models, such as for example particles
behaving via Coulomb potential, the locality is satisfied
in the energy cascade [16]. However, even if one cascade
is local, the fluxes are always in the wrong directions
with respect to prediction of the Fjørtoft argument. This
important result on the direction of the fluxes, [17], is

independent of the dimension d of the system, that is for
d! 2 (for d= 1 the two-body elastic collisions described
in the Boltzmann integral give no contribution since the
conservation of linear momentum and energy would make
outgoing velocities equal to incoming ones).
As shown in fig. 1, we observe distributions not far from

the thermodynamic equilibrium (3) solution. However, we
are in a forced and dissipated situation and let us assume
the existence of a small but finite flux correction “living
on top” of the Maxwell-Boltzmann distribution. This
behavior, named warm cascade, has already been observed
in other physical systems [7,18] and is characterized by
constant flux cascades perturbing the thermodynamic
equilibrium distribution. Mathematically, we assume that

n= nMB (1+ ñ), (5)

with ñ the deviations with respect to the MB distribution
which are responsible for the fluxes; note that not neces-
sarily ñ is small with respect to one. If we plug such ansatz
in the equations for the fluxes (4) we obtain

η= c1 n2MB ñ (2+ ñ)E
7/2

ϵ= c2 n2MB ñ (2+ ñ)E
9/2,

(6)

where c1 and c2 are two constants which cannot be
determined through dimensional analysis. We underline
that the term n2MB coming from the square of (5) does
not give any contribution because it is not responsible
for any net flux. This is due to the fact that the exact
collision integrand (considered without any dimensional
analysis) is identically zero when it is evaluated with the
MB equilibrium distribution and therefore the particle and
energy fluxes are zero.
Our aim is to relate the macroscopic properties of the

system with the forcing and dissipation rates. From our
numerical computation we observe that, as we get closer to
the cut-off scales (Emin and Emax), deviations from a pure
MB distribution becomes more relevant. Consequently, ñ
becomes of the order one for E =Emin or E =Emax and
from (6) we have

η= c1A2 e−
2Emin
T E

7/2
min,

ϵ= c2A2 e−
2Emax
T E

9/2
max,

(7)

where we have redefined the constant c1 and c2. We now
verify the above relations through the direct computation
of the Boltzmann equation. In fig. 3 we show the depen-
dence of A on the fluxes for three simulations previously
described (fig. 1). Supposing to use as temperature of the
system the simple relation coming from the MB distri-
bution T = 2ρE/3ρM , we can observe in fig. 3 (and its
inset) that A scales as the square root of the incoming
fluxes for fixed dissipative scales Emin and Emax. From the
numerics we can estimate, by a fit, the constants c1 and
c2 whose values are reported in the figure. The values of
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Fig. 3: A as a function of the fluxes. Empty circles (and
squares in the inset) correspond to the numerical simulation
results with ∆E = 1. The continuous and dashed lines are
the predictions (7) where the temperature, T = 2ρE/3ρM , has
been defined using the pure MB distribution. The values of
the constant c1 and c2 , shown in the plot, are found by
a fit. For completeness, numerical results obtained with a
different numerical resolution, ∆E = 2, are also reported with
filled circles and squares in the main figure and in the inset,
respectively.

these constants have been found to depend weakly on the
numerical resolution used. For example, the corresponding
numerical results obtained with a half-resolution (∆E = 2)
are shown in fig. 3 and its inset with filled points.
We are now able to predict the dependence of the

temperature on the forcing and the dissipative scales.
Assuming that they are widely separated, that is Emin≪
Ef ≪Emax, we have ϵ= ηEf . Then, from eqs. (7) we get

T =
2 (Emax−Emin)

9
2 lnEmax−

7
2 lnEmin− lnEf + c3

(8)

with c3= ln(c2/c1). The temperature of the system does
not depend on the incoming fluxes but only on the forcing
and dissipative scales; this is consistent with results of the
numerical simulations presented in figs. 1 and 2.
We can check the validity of prediction (8) by consid-

ering different simulations of the isotropic Boltzmann
equation (1) changing the forcing and dissipative scales.
Before entering in the details, we emphasize that our
predictions are based on a dimensional argument and c1
and c2, which define c3, can only be measured via numer-
ical computations. In our simulations we have observed
that, as Emin, Ef and Emax changes, c1 and c2 assumes
different values. This may be related to the fact that we are
considering the hypothesis that the particle flux is all dissi-
pated at low-energy scales and all energy flux at high ones,
that is Emin≪Ef ≪Emax. This is not always verified in
the numerical simulations due to finiteness of the compu-
tational domain. In our numerical simulations we have
measured an upper and lower bounds for our constants
leading to −4.21" c3"−1.05.
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Fig. 4: Temperature as a function of the low-energy cut-off
Emin, keeping fixed F = 10

−3 , Ef = 36, δf = 1 and Emax = 250.
Circles represent the results from numerical computations. The
continuous and dashed lines are the prediction (8) for the lower
and upper bounds of c3 determined in the numerics.

The aforementioned interval includes the analytical
prediction c3= 2 ln(2/9)≃−3.01 obtained in the limit
Emin≪ T ≪Emax which we have presented in [13]. There,
we have used the diffusion approximation model technique
to rewrite the collision integral operator into a diffusive
operator, under the assumption that only velocities with
similar amplitude interact, that is v1 ≃ v2 ≃ v′1 ≃ v′2 in
(1). With this great simplification the integration of
the Boltzmann homogenous isotropic equation becomes
numerically feasible over a large set (decades) of energies
E. The warm cascade behavior has been observed in this
model for constant particle and energy fluxes.
In fig. 4 we show the comparison between the esti-

mation of the temperature from (8) and the numerical
simulation varying the low-energy dissipation scale Emin.
The incoming flux, the forcing and the high-energy
dissipative scales have been kept fixed to the respective
values of F = 10−3, Ef = 36, δf = 1, Emax = 250. The
dashed and the solid line in the figure are the predictions
obtained with c3=−1.05 and c3=−4.21, respectively.
The agreement between the temperature prediction and
the computation is satisfactory.
In fig. 5 we present the behavior of the temperature

as a function of the high-energy cut-off scale Emax, with
F = 10−3, Emin = 5 and Ef = 36, δf = 1. The comparison
between our estimation (8) and the numerics is very good.
In the present letter we have investigated the station-

ary states of a three-dimensional hard sphere gas whose
single-particle distribution function is modeled by the
homogeneous isotropic Boltzmann equation. In particular,
we were interested in the steady nonequilibrium states in
an open-system condition, i.e. in the presence of a forcing
and dissipation mechanisms. Using the language of wave
turbulence theory we have assumed the presence of a
warm cascades as steady distributions. These solutions
are characterized by constant particle and energy fluxes
superimposed on the thermodynamic Maxwell-Boltzmann
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Fig. 5: Temperature as a function of the high-energy cut-off
Emax, keeping fixed F = 10

−3 , Emin = 5 and Ef = 36, δf = 1.
Circles represent the results from numerical computations. The
continuous and dashed lines are the prediction (8) for the lower
and upper bounds of c3 determined in the numerics.

distribution. Our assumption has allowed us to relate the
thermodynamic quantities of the system to the character-
istics of the forcing and dissipative terms of the equation.
In particular, we have been able to give an analytical

relation for the temperature reached in the system as a
function of the forcing and dissipative scales. One of the
main results is that the temperature is independent of
how much energy and particles we inject in the system
but depends only on the cut-off scales and on the forcing
scale. By a direct numerical integration of the Boltzmann
equation we have shown that our numerical results are
consistent with the aforementioned prediction.
We have considered the three-dimensional hard-sphere

gas as our prototype model. This is the simplest model
because the collision cross-section σ is independent of
the incoming and outgoing velocities vi. However, our
approach can be also used to study a gas characterized by
a different interaction potential. In such case the degree of
homogeneity of the kernel in the collision integral would
be different and the KZ solutions would be characterized
by different exponents. Locality and direction of the fluxes
should be checked for each interaction potential.
We believe that the approach used in this letter may

open some perspectives towards understanding non-
equilibrium steady states in other physical systems via
analogies to cases widely studied by the wave turbulence
theory.
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