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Abstract We study the scattering of vortex rings by a superfluid line vortex using the
Gross–Pitaevskii equation in a parameter regime where a hydrodynamic description
based on a vortex filament approximation is applicable. The scattering of a vortex ring
by a line vortex is characterised by the initial offset of the centre of the ring from the
axis of the vortex. We find that a strong asymmetry exists in the scattering of a ring
as a function of this initial scattering parameter. Using a vortex extraction algorithm,
we are able to track the location of the vortex ring as a function of time. We then
show that the scattering of the vortex ring in our Gross–Pitaevskii simulations is well
captured by the local induction approximation of a vortex filament model for a wide
range of impact parameters. In contrast, the absorption of the ring by the line vortex
is not predicted by the local induction approximation.

Keywords Superfluids · Biot-Savart filament model · Local induction approxima-
tion · Gross–Pitaevskii model · Topological defects · Scattering theory

1 Introduction

Quantized vortex rings in superfluids constitute one of the most fundamental localised
topological excitations in the study of quantum turbulence. In recent years, such vortex
rings have attracted much attention as they continue to provide a key mechanism in
understanding the transition to quantum turbulence [1]. At the same time, they can
serve as a vital mechanism in understanding how different regimes of turbulence can
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coexist on disparate length and time scales. When forced at large scales, quantum
turbulence can give rise to a Kolmogorov-like inertial range in the energy spectrum.
It has been proposed that this gives way to the Kelvin-wave cascade at higher wave
numbers for liquid 4Hewithin the ultra-low temperature regime [2,3].Within the cross-
over range of scales, the emission of vortex rings from individual quantized vortex
filaments acts to assist in the transfer of energy from large quasi-classical motion to the
small Kelvin-wave cascade. Indeed, without such amechanism, a bottleneckmay form
within the energy cascade [4]. However, once these rings are emitted, their subsequent
role in the direct energy cascade of superfluid turbulence remains unclear. This is
particularly so since no measurements of the characteristics of turbulence within the
cross-over range have thus far been made. The possible scenarios are that the emitted
vortex rings can either pass through the tangle with little interaction or they could be
reabsorbed. This question of the transparency of the tangle to the emission of vortex
rings remains an open and not a well-understood problem in superfluid turbulence.

The important role that vortex rings occupy in the study of quantum turbulence
has prompted detailed experimental studies of these excitations in both 4He and 3He
[5,6]. This has revealed that the number density of vortex rings strongly determines
the likelihood of neighbouring vortex rings to reconnect. This subsequently influences
their time of flight. Such studies can help uncover the nature of turbulence within the
cross-over range of scales. However, a better understanding of how vortices interact
and scatterwith vortex lines is also important in order to establish a clear understanding
of the role of vortex rings within this range of scales. In this paper, we will present
a detailed numerical study of the scattering of a single vortex ring with a straight
superfluid vortex. This scenario is in contrast to the scattering between vortex rings
[7,8] and can be viewed as a paradigm of how vortex rings interact with vortex lines or
bundles [9] within fully developed quantum turbulence. Our approach relies primarily
on the mean field theory of the Gross–Pitaevskii (GP) equation. However, to relate
this to the hydrodynamic interpretation of quantum turbulence, we also interpret our
results using the Biot-Savart law and its simpler approximate form given by the local
induction approximation (LIA) [10]. To accomplish this, we develop diagnostics to
extract the location of topological excitations from our mean field model simulations
that allow us to track the evolution of key quantities including vortex line length that
provides a direct measure of key attributes associated with these topological defects.

2 Mathematical Models

We will model the interaction of quantized vortices within the mean field theory of a
superfluid which is governed by the GP equation

i h̄∂tψ = −h̄2

2m
∇2ψ + g|ψ |2ψ. (1)

While this equation provides a good description of the time evolution of a homoge-
neous weakly interacting dilute Bose gas for temperatures close to absolute zero, we
will use it as a good qualitative model that can reproduce the essential hydrodynamics
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on sufficiently large length scales. In Eq. (1), ψ is the condensate wave function for
N bosons of mass m, h̄ is the reduced Planck constant, and g = 4π h̄2a/m is the
interaction strength arising from binary interactions where a is the s-wave scattering
length.

Equation (1) is derivable from a Hamiltonian such that it satisfies the key conser-
vation laws of mass

M = m
∫

|ψ |2d3x, (2)

linear momentum

P = h̄

2i

∫ [
ψ∗∇ψ − ψ∇ψ∗] d3x, (3)

and energy

E =
∫ (

h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
d3x. (4)

It is useful to recast the above equation into hydrodynamic form by introducing the
Madelung transformation

ψ = Rei S . (5)

Defining the mass density, ρ = mR2, and the local velocity vector, v = h̄
m∇S, it is

possible to show that the Gross–Pitaevskii equation transforms to the set of equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (6)

∂v
∂t

+ v · ∇v + g

m2∇ρ − h̄2

2m2∇
[

∇2√ρ√
ρ

]
= 0, (7)

which describes the flow of a barotropic, irrotational and inviscid fluid.
Even though the fluid is irrotational, the superfluid can support vortex filaments

with vorticity concentrated according to ω = ∇ × v = κδ(x − s), where s = s(ζ0)
describes the position of the vortex filament that is parametrised by the arclength ζ0
at some initial time t0. Here, κ = nh̄/m is the circulation around a superfluid vortex
which is quantized since n ∈ Z. Therefore, vorticeswithin theGPmodel are delineated
by curves s(t, ζ0) that can move. In contrast to a classical inviscid fluid described by
the Euler equations, the GP model allows the topology of the vorticity field to change.
Such changes in topology occur during reconnections and are an essential process in
the decay of quantum turbulence.

To allow further analogies to be drawn between the GP equation and the hydrody-
namic description of a classical fluid, we can decompose the energy appearing in Eq.
(4) into three contributions corresponding to a kinetic energy, potential (interaction)
energy, and quantum energy. These are given, respectively, by

Ekin = 1

2

∫
|√ρv|2d3x, Eint = g

2

∫
ρ2d3x, Equ = h̄2

2m

∫
|∇√

ρ|2d3x. (8)

Equations (6) and (7) show that our system is, in fact, a compressible fluid. The kinetic
energy can, therefore, be decomposed into an incompressible and a compressible
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component. Using the definition given by Nore et al. [11], we introduce a Helmholtz-
Hodge decomposition on the velocity weighted by the square root of the superfluid
density such that

√
ρv = (

√
ρv)i + (

√
ρv)c, (9)

∇ · (
√

ρv)i = 0, ∇ × (
√

ρv)c = 0. (10)

It has become standard in the literature to interpret the incompressible and compress-
ible energies given by

Ei
kin = 1

2

∫ ∣∣∣(√ρv
)i ∣∣∣2 d3x, Ec

kin = 1

2

∫ ∣∣(√ρv
)c∣∣2 d3x, (11)

as the energies associated with the vortex lines and the sound excitations, respectively.
For a superfluid, the healing length ξ characterises the size of the core of a vortex

which, in terms of quantities appearing in Eq. (1), can be expressed as ξ = h̄/
√
2gρ∞,

where ρ∞ is the density of the fluid in the far field. Since our work is motivated by the
cross-over range of scales in superfluid turbulence, where the typical intervortex sepa-
ration is l � ξ , this implies that the characteristic size of our computational domain D
satisfies D ≥ l. Under this condition, and in the absence of reconnections, the incom-
pressible component of the kinetic energy dominates over the compressible kinetic
energy and quantum energy. Equations (6)–(7) then simplify to the incompressible
form of the fluid equations given by

∇ · v = 0, (12)
∂v
∂t

+ (v · ∇)v = − 1

ρ
∇ρ. (13)

These assumptions will be verified later in our numerical simulations. On these length
scales, our flow is considered to apply to a non-simply connected region that is threaded
by vortex filaments. Therefore, the flow can still have a non-trivial circulation around
each vortex filament. From the Biot-Savart law [12], we have that the velocity induced
by a vortex filament is given by

v = κ

4π

∫
C(t)

ds × (x − s)
|x − s|3 , (14)

where x is a position vector for any point in the fluid, while s is a point of the curve
C(t) where the vortex line lies. According to the Kelvin-Helmholtz theorem [13], we
can also write the equation of motion for the vortex line as

ṡ = κ

4π

∫
C(t)

ds0 × (s − s0)
|s − s0|3 . (15)

In general, the motion of a point lying on the vortex line depends on its instantaneous
configuration. However, there are cases where one can consider the motion to be
determined by only the local radius of curvature. This leads to the LIA [12]
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Fig. 1 The initial configuration
used to study the scattering
between a line vortex and a
vortex ring. The ring, having
initial radius R, lies in the y-z
plane, while the line is aligned
with the z-coordinate direction
and passes through the origin
(0, 0) (Color figure online)

ṡ = κ

4π
ln [1/(kao)] s′ × s′′, (16)

where s′ ans s′′ are, respectively, the first and second derivatives of the curve with
respect to the arclength, k is a characteristic wavenumber of the vortex at the point s,
and ao 
 2π/k is an effective core size of the order of the healing length. We remark
that such a model is a completely integrable system for which the length of a vortex
line is a constant of motion.

3 Numerical Method

In this work, we numerically solve a dimensionless form of the GP equation. Using
the rescaling transformations ψ → √

ρ∞/mψ , x → ξ x , and t → τ t , where ξ =
h̄/

√
2mc is the healing length, c = √

gρ∞/m2 is the speed of sound, and τ = ξ/
√
2c,

Eq. (1) becomes

i∂tψ = −1

2
∇2ψ + 1

2
|ψ |2ψ. (17)

The initial conditions we use for Eq. (17) always correspond to a single straight line
vortex and a vortex ring that is perfectly circular. We assume that the ring is small
compared to the line vortex and set the radius, R, of the ring to be small relative to the
distance, dx , between the ring and the line vortex. Due to the size of the computational
domain that extends over a length L = 128 in each direction and the need to accurately
resolve the ring, we are restricted to set R/dx = 1/6. The boundary conditions are
taken to be periodic along the z-coordinate direction which coincides with the axis of
the straight line vortex, and reflecting in the other two directions corresponding to the
x-y plane. Figure 1 provides an illustration of a typical initial condition.

The complex wave functionψ is discretised in a cubic box having a uniform grid of
2563 points. In order to accurately resolve the vortex core, we set the grid resolution
to �x = �y = �z = 0.5 so that L = 128 as required. The radius of the ring is set to
R = 8, and its initial distance from the line is set to dx = 48 to minimise the influence
of the reflective boundaries and the line vortex on the ring. The line vortex is centred
at the origin located at the centre of the computational domain while the vortex ring
centre is located at (−dx , dy, 0) and lies in the y-z plane. Here, dy/R will play the role
of the offset parameter in our simulations. The initial condition is obtained by setting
ψ(x, t = 0) = ψline(x, y, z) × ψring(x + dx , y − dy, z) where

ψline(x, y, z) = f (r)eiθ , (18)
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with r = √
x2 + y2 and θ = arctan(y/x). The radial density profile f (r) can be

obtained from a Padé approximation as described by Berloff [14]. The solution for a
vortex ring with radius R moving along the x-direction is given by [15]

ψring(x, y, z) = f (η1) f (η2)e
i(arctan ((

√
z2+y2−R)/x)−arctan ((

√
z2+y2+R)/x)), (19)

where arctan is the four quadrant arc-tangent, η1 =
√

(
√
z2 + y2 − R)2 + x2 and

η2 =
√

(
√
z2 + y2 + R)2 + x2.

The non-dimensional GP equation (17) is integrated forward in time using a stan-
dard split-step method. Defining the linear and non-linear operators appearing in Eq.
(17) asL = 1/2∇2 andN = −1/2|ψ |2, respectively, we can write for a sufficiently
small time step �t

ψ(x, t + �t) = ei�t (N +L )ψ(x, t) ≈ ei
�t
2 (N ) ei�t (L ) ei

�t
2 (N ) ψ(x, t) . (20)

This approximation has an error of order O(�t2). The integration of the non-linear
operator can be easily computed in physical space using

ψ(x, t) = ψ(x, t∗) e−i |ψ |2(t−t∗)/2. (21)

On the other hand, the integration of the linear operator part is performed in wavenum-
ber space as

ψ̃(k, t) = ψ̃(k, t∗) e−iω(k)(t−t∗), (22)

where (·̃) denotes the Fourier/cosine transformed quantity and ω(k) = |k|2/2 is
the angular frequency of the Fourier mode k. This is accomplished by decomposing
the field ψ using discrete cosine transforms in the x, y directions and the discrete
Fourier transform in the z direction in order to satisfy the reflective and periodic
boundary conditions in the respective coordinate directions. In all our simulations, we
set �t = 0.02, such that it is much smaller than the fastest linear period T = 2π/ω

of the system.

4 Results

In Fig. 2a, we present an example of the scattering of a vortex ring by a line vortex for
an initial condition corresponding to the offset dy/R = 0. In general, the dynamics
reveal the sequence of events: (i) the ring approaches the line vortex with a trajectory
that is slightly deviated by the velocity field induced by the line vortex; (ii) if the two
objects are sufficiently close to one another, a reconnection takes place and a new ring
escapes from the line; and (iii) excitations in the form of Kelvin waves are generated
both on the line and on the ring. These features are clearly discernible in Fig. 2a.

In order to quantify the properties of the interaction between the two objects, it is
useful to evaluate the momentum of each topological excitation. The GP model can
be used to evaluate the total energy and momentum of the system arising from the
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Fig. 2 Time sequence of scattering of a vortex ring by a line vortex computed by integrating the GP
equation (17) plotted at t = 0, 225, 250, 300: a isosurfaces of the density field at the value |ψ |2 = 0.3; b
vortex filament representation of topological excitations obtained by tracking zeros of the wave function
(Color figure online)

total contribution associated with all excitations present in the flow. However, in the
limit where the healing length is very small compared to other characteristic length
scales within the flow, it is often possible to approximate the flow by an incompressible
system as described in Sect. 2. In principle, this allows us to attribute momentum and
energy to different contributions arising from the Biot-Savart integral for each vortex.
In order to do this, we need to find the collection of points describing the vortex defects,
by tracking the vortices in the computed GP wave function. To accomplish this, we
have developed an algorithm to find a zero of the wave function in a plane based on
the method used by Krstulovic [16]. By applying the algorithm to the x-y, x-z, and
y-z planes of our numerical domain, and appropriately connecting all the points, we
are able to separately extract the ring and the line vortex from the wave function field
as presented in Fig. 2b. The results are in agreement with the vortices identified by the
low-density isosurfaces of Fig. 2a and confirm the reliability of our tracking algorithm.

For the same run,we have evaluated how the different contributions to theGPenergy
vary during the scattering. The evolution of the quantum energy, Equ, the incompress-
ible kinetic energy, Ei

kin, and the compressible kinetic energy, Ec
kin, as given in Eqs.

(8) and (11) are plotted in Fig. 3a. The results confirm that the contribution from the
compressible kinetic energy is negligible with respect to the incompressible one; it
remains two orders of magnitude smaller in comparison to the other components even
during reconnections. Nevertheless, we expect that the compressible energy per unit
volume can become large locally during reconnections. Indeed, upon closer inspec-
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(b)(a)

Fig. 3 Variation of energy as function of time: a different components of the energy on a semi-logarithmic
plot, b evolution of quantum energy during a reconnection event (Color figure online)

tion of the quantum energy as shown in Fig. 3b, we observe a sharp increase within
the time interval between t = [200, 250]. This time period coincides with the recon-
nection event as indicated in Fig. 2. Despite the substantial increase in the quantum
energy during such events, it remains significantly below the incompressible kinetic
energy. This verifies that our simulations are performed within a regime where the
hydrodynamic approximation is expected to be valid. For this reason, we will analyse
our results in terms of the Biot-Savart or LIAmodels after applying the vortex tracking
algorithm. In particular, we will focus on how the scattering process depends on the
initial ring offset by varying this parameter within the interval dy/R ∈ [−1.5, 3.5].
To extract the information on the final quantities after the scattering, we computed the
centre of mass of the ring xringCM as the average of the positions of the points tracked
with the algorithm. Once the ring had reached a threshold distance of d/R = 6 from
the line vortex (where d is the total distance between the ring and the line vortex),
the ring–line interaction was assumed to be small at which point the relevant quanti-
ties were computed. The corresponding time at which such quantities are evaluated is
denoted by tf .

We begin by presenting in Fig. 4a results for the variation of the vortex ring and
line lengths as a function of time for two cases corresponding to dy/R = 0 and
dy/R = 2. In each case, the length of each vortex has been normalised with respect to
its initial value given at time ti . For the offset value dy/R = 0, we observe that both
lengths remain essentially constant up to the point of a reconnection, during which
the line vortex absorbs part of the ring length. At later times, both lengths show some
fluctuations due to the presence of propagating Kelvin waves on both vortices which
is in agreement with the results reported in [17]. In contrast, the case with the offset
value dy/R = 2 reveals a markedly different trend in the time dependence of the line
length. In particular, following a reconnection, the ring is completely absorbed by the
line vortex.

In Fig. 4b, we evaluated the ratio of the initial and final lengths separately for the
vortex ring L ring and the line vortex L line as a function of initial ring offset dy/R. Also
presented is the total length. For comparison, we have included predictions obtained
from LIA in which the reconnected segments of the line and ring vortices can be
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(a) (b)

Fig. 4 a Variation of length of line and ring vortex as a function of time during a reconnection; b final
length for the line vortex and the ring normalised by the total initial initial length for different values of
the initial offset parameter dy/R. Also shown is the theoretical prediction made with the LIA. The shaded
regions correspond to the intervals where the vortex ring does not reconnect with the line vortex in the GP
simulations (Color figure online)

obtained from purely geometric considerations. The most striking feature of this plot
is the asymmetric dependence of the computed line length on initial vortex offset. This
is attributed to the severe constraints imposed by the winding around the line vortex
and the vortex ring which enforces a very specific change of topology onto the system.
Consequently, for our configurations, positive offset values lead to smaller rings being
produced whereas negative offset values result in larger rings. Despite the strong non-
local nature of the line vortex interaction that arises from the Biot-Savart integral
upon close approach of the ring to the line vortex, it is interesting that LIA captures
the integrated quantities such as line length quite well away from the reconnections.

Close inspection of Fig. 4b shows that the agreement between the LIA predictions
and numerical results is particularly good within the interval dy/R ∈ [−1.5,−0.5) ∪
(2.5, 3.5]. To explain this, we note that within LIA, a reconnection can only occur if
the projection of the initial vortex ring position in the direction along the centreline
of the ring crosses the line vortex, that is, for dy/R ∈ [−1, 1]. Hence, reconnections
are not permitted outside this interval which leads to the stepwise jump at dy/R = 1
seen in Fig. 4b. For dy/R ∈ [−1,−0.5), reconnections occur within the LIA but lead
to small depletions in the length of the ring. On the other hand, GP simulations show
no reconnections within this interval (the shaded regions in Fig. 4b). This is caused
by the non-local nature of the line vortex interaction in which the ring significantly
distorts the line such that it can pass by without reconnecting. For this reason, the
agreement between the GP and LIA turns out to be exceptionally good within the
interval dy/R ∈ [−1.5,−0.5). For dy/R ∈ [−0.5, 2.5], reconnections occur within
the GP simulations which result in a departure of the calculated final line lengths in
comparison to LIA. For values of dy/R ∈ [1, 2.5], the discrepancies are greatest since
reconnections still occur in our GP simulations but cease for LIA due to the geometric
considerations discussed above. Moreover, we observe a complete absorption of the
ring by the vortex line in the interval dy/R ∈ [1.4, 2.5]. A modified LIA model that
accounts for some non-local effects was proposed by Schwarz [18]. The non-local
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Fig. 5 Asymmetric behaviour for two scattering examples having two opposite starting offset positions
(dy/R). Different colours are used for the vortex line and ring for ease of visualisation; a dy/R = −0.75,
b dy/R = 0.75. The initial vortex ring positions relative to the initial location of the line vortex are shown
in the insets (Color figure online)

term reduces the interval over which reconnections can occur from dy/R ∈ [−1, 1]
to dy/R ∈ [−0.5, 1]. This extended model of Schwarz is also in good agreement with
our numerical results. We point out that the ratio between the ring radius and initial
distance from the line vortex in Schwarz’s work is 1/10 so that the vortex ring is
initially located further away than in our simulations which have a ratio dx/R = 1/6.
Therefore, a more detailed quantitative comparison of the trajectory of the ring cannot
be made.

As a clear illustration of the asymmetry seen in our simulations, we present in
Fig. 5 plots of the vortex line and ring positions following a reconnection event for two
opposite values of the ring offset parameter. These plots were obtained by extracting
the vortex positions using our tracking algorithm to elucidate the differences seen
for the two different values of the initial offset corresponding to (dy/R = −0.75)
and (dy/R = 0.75). Due to the conservation of the circulation, reconnections always
lead to the new ring being located to the left in our figures. Thus, the emitted rings
have very different sizes following their encounter with the line vortex. Under LIA,
smaller circular rings are known to travel faster than larger ones. We can, therefore,
infer the velocities of the rings from the knowledge of their size (for instance see
Fig. 7b, LIA prediction) where, to a first approximation, we can neglect the effect of
Kelvin waves on the velocity of the ring. This is justified on the basis that such waves
turn out to be small following reconnection events in our simulations in contrast to
some of the large amplitude Kelvin waves that have been considered in other works
[19–21]. Alternatively, we can evaluate a ring’s velocity directly from the variation
of the ring centre of mass xrCM with time. Figure 6a provides an illustration of how
an initially circular vortex ring scatters with a straight line vortex. The computed
trajectory of the ring is also included to illustrate the deflection that a ring experiences
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(a) (b)

Fig. 6 a Illustration of the scattering of a ring by a line resulting in line length loss and deflection of the
ring. b Trajectory of a ring on the x-y plane during an encounterwith a line vortex. The vortex ring positions
are plotted at the times, t = 0, 50, 100, 150, 200, 250, 300, 306, 312, 318, 324, 330, 336 (Color figure
online)

(a) (b)

Fig. 7 a Variation of the deflection angle θ = θfin − θin as a function of the initial offset dy/R; b variation
of the final ring velocity magnitude as a function the initial offset dy/R. The dark shaded regions correspond
to the intervals where no reconnections occur. The light shaded region corresponds to the interval where
complete absorption of the ring takes place (Color figure online)

as it encounters the line vortex. Since the linear momentum of the initial condition has
no z-component (the single line carries null linear momentum and the axis of the ring
is by construction aligned along the x-coordinate direction), we expect the motion of
the ring to be purely on the x-y plane. Therefore, in Fig. 6bwe have plotted the position
of the ring at different times on the x-y plane. In this plot, lengths are measured in
units of the initial ring radius R. The results indicate that in the latter stages of the
simulation, the ring moves with almost linear velocity. The deflection and associated
change in momentum is in part balanced by the Kelvin-wave excitations generated
on the line vortex and the phonon excitations introduced into the system during the
scattering process.

To simplify the analysis,we can assume that, at the initial andfinal stages, themotion
of the ring is essentially uniform as the interaction with the line vortex is weak. By
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fitting the trajectory of the ring given by its centre of mass with a straight line, we
are able to evaluate the characteristic deflection angle θ = θfin − θin as well as the
variation in the velocitymagnitude |vfin|/|vin|. Figure 7a, b show the behaviour of these
two parameters versus the initial offset value dy/R, respectively. The deflection angle
depends strongly on whether or not a reconnection occurs. As discussed previously,
reconnections take place for offset values dy/R ∈ [−0.5, 2.5], resulting in a drastic
change in the behaviour of the deflection angle in comparison to when the ring is
not absorbed by the line. On the other hand, the variation in the magnitude of the
velocity grows as a smooth and essentially monotonically increasing function of the
initial offset up to the critical absorption offset given by dy/R = 1.4 where the ring is
completely absorbed by the line vortex. As expected, smaller rings that are produced
at positive values of the offset, have very large velocities. It is interesting to observe
that the numerically evaluated vortex ring velocities are in reasonable agreement with
the prediction of the LIA. We note that when smaller rings are produced, a larger
fraction of the energy is transferred into large amplitude excitations along the line
vortex. These subsequently could interact as soliton-like excitations [22]. On the other
hand, the scattering of large rings imparts small amplitude Kelvin-wave excitations
onto the line vortex.

5 Conclusions

We have studied the scattering of vortex rings by a line vortex using the GP equation.
In particular, we have identified the effect of varying the initial offset parameter of
the vortex ring on its subsequent scattering properties. Our results have revealed that
a strong asymmetry is seen in the scattering of vortex rings by a line vortex due to
the severe topological constraints imposed onto the system. Using a vortex tracking
algorithm,wehave evaluated how the length of the ring and line vary after the scattering
as a function of the initial offset parameter. We have also shown that predictions
made by LIA based upon simple geometric considerations lead to a reasonably good
agreement with results based on full GP simulations for negative values of the offset
parameter, but are unable to capture the ring absorption which can occur for a range
of positive offset values.

We point out that a complementary study of the scattering of vortex rings by line
vortices within a vortex filament simulation has recently been reported in [23]. A key
difference between their simulations and those reported here is that the ratio between
the initial size of the vortex ring and the initial distance from the line vortex to the
vortex ring is 8/25 in their case. This is less than the value considered by Schwartz of
1/10,who used amodifiedLIAmodel [18], and our value of dx/R = 1/6. This implies
that non-local effects have less time over which to act to deflect the trajectory of the
incoming vortex ring and may explain why they observe better agreement between
LIA and Biot-Savart simulations than the results reported here.

We have also found that reconnections resulting in the emission of smaller vortex
rings that move at higher velocities result in strong deflections in the trajectory of the
ring, while the emission of larger rings results in weak deflections. The production of
smaller rings during scattering corresponds to the deposition of a larger fraction of the
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energy from the ring onto the line vortex. This leads to large amplitude Kelvin waves
that can behave more like Hasimoto solitons [22] propagating along a vortex. On the
other hand, larger loops correspond to small amplitude Kelvin waves being produced
on the line vortex. These observations have direct relevance to our understanding of the
cross-over range of scales in superfluid turbulence where the emission of vortex rings
due to the direct energy cascade as discussed by Svistunov [24] or due to breather
excitations as reported by Salman [25] turns out to be very important. Indeed, the
production of large amplitude Kelvin waves can result in the emission of further rings
following self-reconnections on a vortex line. These findings raise the question of
how transparent is a turbulent tangle to vortex rings that can be emitted within the
cross-over range as this can have direct relevance to the question of how energy is
dissipated within the ultra-low temperature regime of turbulence.
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