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We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational
instability. By applying a suitable transformation, we map the forced/damped nonlinear Schrödinger (NLS)
equation into the standard NLS with constant coefficients. The transformation is valid as long as |Γ t| � 1,
with Γ the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave
solutions of the equation are presented and discussed. The results shed some lights on the effects of
wind and dissipation on the formation of rogue waves.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The modulational instability, also known as the Benjamin and
Feir instability in the water wave community, has been discov-
ered in the late sixties independently by Benjamin and Feir [1]
and Zakharov [2] (see [3] for an historical review on the sub-
ject and possible applications). It describes the exponential growth
of an initially sinusoidal long wave perturbation of a plane wave
solution of the one-dimensional water wave problem. For water
waves the condition of instability in infinite water depth is that
2
√

2a0k0N > 1, where a0 is the amplitude of the plane wave and
k0 is the corresponding wave number; N = k0/�K is the num-
ber of waves under the perturbation of wavenumber �K . The
modulational instability is frequently studied within the nonlin-
ear Schrödinger (NLS) equation that describes weakly nonlinear
and dispersive waves in the narrow band approximation. In this
context, the nonlinear stages of the modulational instability are
described by exact solutions of the NLS, known as Akhmediev
breathers [4,5]. Other exact NLS solutions which describe the fo-
cusing of an initially non-small perturbation have been derived in
[6,7]. Such solutions have been considered as prototypes of rogue
waves [8,9].

Within the one-dimensional NLS equation, the modulational in-
stability is well understood. What is probably less clear is the
modulation of waves and the formation of rogue waves in forced
(by wind) or damped (by dissipation) conditions. In this regard in
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the past there has been a number of experimental works [10–12],
which did not gave a clear picture on the effect of the wind on the
modulational instability. A careful discussion of the discrepancy of
the results presented in the above papers can be found in [12]. Ac-
cording to their discussion the role of the wind is twofold: (i) the
wind changes the growth rate of the instability; (ii) the natural se-
lection of the sideband frequency is altered with respect to the no
wind conditions.

Concerning damping effects, it has been showed in [13] that
any amount of dissipation stabilizes the modulational instability,
questioning the role of the modulational instability in the forma-
tion of rogue waves [14]. More recently, the role of dissipation and
wind in the modulational instability has been considered together
within the NLS equation [15] (then confirmed by fully nonlinear
simulations [16]). The authors performed a linear stability analy-
sis and numerical simulations and found that, in the presence of
wind, young waves are more sensitive to modulational instability
than old waves.

The just mentioned numerical results (except the one in [16])
are all based on the following forced and damped nonlinear
Schrödinger equation:

i
∂ A

∂t
− α

∂2 A

∂x2
− β|A|2 A = iΓ A. (1)

A is the wave envelope, α and β are two coefficients that depend
on the wavenumber, k0, of the carrier wave. The right-hand side is
responsible for the forcing, Γ > 0, and/or dissipation, Γ < 0. The
two effects are additive so that Γ is in general the sum of forc-
ing coefficient plus a damping one. The wind forcing depends on
the ratio between air and water density and the dissipation on the
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water viscosity, therefore the absolute value of Γ is always a small
quantity. Finding analytical solutions of Eq. (1) is not an obvious
task. In the present Letter we take advantage of the smallness of
Γ and, after a suitable transformation, we are able to find breather
solutions of the forced-damped NLS equation. In the following sec-
tions we first describe the transformation and then present the
rogue wave analytical solutions.

2. Reduction of the forced/damped NLS to the standard NLS

We considered the NLS equation discussed in [15]

i

(
∂ A

∂t
+ cg

∂ A

∂x

)
− 1

8

ω0

k2
0

∂2 A

∂x2
− 1

2
ω0k2

0|A|2 A = iΓ A (2)

with

Γ = 1

2gκ2

ρa

ρw
γω0

(
u∗
c

)2

− 2νk2
0. (3)

Here κ is the Von Karman constant and u∗ is the friction veloc-
ity, g is the gravity acceleration, ρa and ρw are the air and water
density, respectively; γ is a coefficient to be determined from the
solution of Rayleigh equation associated to the stability of the wind
wave problem (see also [17] for a justification of the wind forcing
term); c is the phase velocity, ν is the water kinematic viscosity. In
[15] the equation is written in a non-dimensional form and the co-
efficient K = Γ/ω0 is introduced. The surface elevation is related
to the envelope as follows:

η(x, t) = 1

2

(
A(x, t)exp

[
i(k0x − ω0t)

] + c.c.
)
. (4)

Note that we use a different definition of the surface elevation
from the one in [15] where the 1/2 factor is not included (the
consequence is that the coefficient in the nonlinear term in Eq. (2)
differs by a factor of 4 from the one in Eq. (3.1) in [15]). If ε is the
small parameter in the derivation of the NLS, then it is assumed
that the right-hand side term in (2) is of the order of ε2 as the
nonlinear and the dispersive term.

We consider the following new variable:

B(x, t) = A(x, t)e−Γ t (5)

and by selecting a coordinate system moving with the group ve-
locity we get:

i
∂ B

∂t
− α

∂2 B

∂x2
− βe2Γ t |B|2 B = 0 (6)

where α and β are the coefficients of the dispersive and nonlin-
ear term, respectively. Written in the above form the effect of the
forcing/damping term enters as a factor in front of nonlinear term
and has the role of enhancing/decreasing the nonlinearity of the
system as the wave evolves in time. Recalling that Γ is usually
small, we Taylor expand the exponential and rewrite the equation
as follows:

i
∂ B

∂t
− α

∂2 B

∂x2
− βp(t)|B|2 B = 0 (7)

with p(t) = 1/(1 − 2Γ t). We underline that the transformation of
the forced/damped NLS equation to the standard NLS is possible
only if 1/p(t) is equal to a linear function in t . Let’s introduce the
following change of coordinates:

χ(x, t) = p(t)x, τ (t) = p(t)t (8)

and scale the wave envelope function B as follows:

ψ(χ,τ ) = B(x, t)√ exp

[
−i

(
Γ p(t)x2 )]

. (9)

p(t) 2α
Fig. 1. The Peregrine solution of the forced NLS equation.

After the transformation, Eq. (6) results in:

i
∂ψ

∂τ
− α

∂2ψ

∂χ2
− β|ψ |2ψ = 0, (10)

i.e. the NLS equation with constant coefficients. We have trans-
formed the forced/damped NLS equation into the standard NLS
equation whose all analytical solutions are known. From a physical
point of view the transformation (and consequently the validity of
the solutions) is valid as long as 2|Γ t| � 1 (the transformation is
singular for 2|Γ t| = 1).

We stress that for other functional dependences of 1/p(t) from
linear in t , the transformation does not seem to be possible. Our
result is consistent with ones reported in [18,19] where analytical
solutions of the variable coefficient NLS equation are described.

3. Rogue wave solutions

In the following we will present the three analytical solutions
corresponding to the Peregrine, the Akhmediev and the Kuznetsov–
Ma breathers for the standard NLS.

The Peregrine solution, also known as the rational solution, has
been originally proposed in [5]. It has the peculiarity of being nei-
ther periodic in time nor in space: it is a wave that “appears out
of nowhere and disappears without trace” [20,21]; its maximum
amplitude reaches three times the amplitude of the unperturbed
waves. For the above reasons it has been considered as special
prototype of freak wave, [21]. The Peregrine solution has been re-
cently reproduced experimentally in wave tank laboratories [22]
and in optical fibers [23].

Below we present the exact analytical solution of Eq. (7)
which is the analogous of the Peregrine solutions but for the
forced/damped case:

B(x, t) = B0G(x, t)

(
4α(1 − i2βB2

0 p(t)t)

α + α(2βB2
0 p(t)t)2 + 2βB2

0(p(t)x)2
− 1

)

(11)

with

G(x, t) = √
p(t)exp

[
i

(
Γ p(t)x2

2α
− βB2

0 p(t)t

)]
. (12)

In Fig. 1 we show an example of such solution for steepness
0.1 and forcing coefficient K = 0.0004 (the same value has been
used in [15]). The axis are normalized by the wave period, the
wavelength and the initial wave amplitude B0. The effect of the
wind/dissipation is to increase/reduced the amplitude of the plane
wave. As in the case of the standard NLS, the wave appears only
once in time and space.

The Akhmediev solution [4] describes the modulational instability
in its nonlinear regime; it is periodic in space. It is characterized
by an amplification factor which ranges from 1 to 3 (this last value



M. Onorato, D. Proment / Physics Letters A 376 (2012) 3057–3059 3059
Fig. 2. The Akhmediev solution of the forced NLS equation.

Fig. 3. The Kuznetsov–Ma solution of the forced NLS equation.

corresponds to the Peregrine solution). In the presence of a forcing
or a damping, the breather has the following analytical form:

B(x, t) = B0G(x, t)

×
(√

2ν̃2 cosh[σ p(t)t] − i
√

2σ̃ sinh[σ p(t)t)]√
2 cosh[σ p(t)t] − √

2 − ν̃2 cos[νp(t)x] − 1

)

(13)

and

ν = k0

N
, ν̃ = ν

B0

√
α

β
,

σ̃ = ν̃
√

2 − ν̃2, σ = βB2
0σ̃ . (14)

The function G(x, t) is reported in Eq. (12). It should be noted that
the function is periodic in space with a period that changes in
time. In Fig. 2 we show an example of such solution for steepness
0.1, N = 5 and forcing coefficient of K = 0.0004.

The Kuznetsov–Ma solution [6] is periodic in time and decrease
exponentially in space. While for the Akhmediev breather the large
time (positive or negative) limit is a plane wave plus a small per-
turbation, the modulation for the Ma breather is never small. The
solution for the forced/damped equation is here reported:

B(x, t) = B0G(x, t)

×
(−√

2μ̃2 cos[ρp(t)t] + i
√

2ρ̃ sin[ρp(t)t)]√
2 cos[ρp(t)t] − √

2 + μ̃2 cosh[μp(t)x] − 1

)

(15)

with

μ = B0μ̃

√
β

α
, ρ̃ = μ̃

√
2 + μ̃2, ρ = βB2

0ρ̃. (16)
μ̃ is a parameter related to the amplification factor. In Fig. 3 we
show an example of such solution for steepness 0.1, μ̃ = √

2 and
forcing coefficient of K = 0.0004. The periodicity (appearance of
maxima) changes in time: it increases in the presence of forcing
and decreases for a damping case.

4. Conclusion

In the present Letter we have considered the problem of gener-
ation of rogue waves in the presence of wind forcing or dissipation.
Our work is based on the one-dimensional forced/damped NLS
equation.

Under the assumption of 2|Γ t| � 1, where Γ is the forcing
(Γ > 0) or damping (Γ < 0) term, we have shown how the equa-
tion can be mapped into the standard NLS equation with constant
coefficients. In this framework, we have found explicit analytical
breather solutions.

As mentioned the effect of wind/dissipation is to increase/
reduce in time the coefficient in front of the nonlinear term. This
has an impact on the modulational instability; in particular, an
initially stable (unstable) wave packet could be destabilized (stabi-
lized) by the wind (dissipation). Similar results have been obtained
for the interaction of waves and current (see [24]). The present re-
sults should be tested in wind waves tank facilities.
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