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We study the formation of extreme events in incoherent systems described by the Nonlinear Schrödinger 
type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order 
moment of the probability density function of the wave envelope to the rate of change of the width 
of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by 
some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing 
regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical 
simulations in 1D+1 and 2D+1 are also performed to confirm the results.

© 2016 Published by Elsevier B.V.
1. Introduction

Processes that lead to the formation of heavy tails [1–3] in the 
Probability Density Function (PDF) are of wide interest in many 
physical contexts [4–10]. It is well known that in homogeneous 
conditions, if the central limit theorem applies, a linear wave 
dispersive system characterized by a large number of incoherent 
waves is described by a Gaussian statistics; in the latter situa-
tion extreme events can still appear but they are very rare, and 
their probability of appearance can be derived exactly, [11,12]. In 
the field of ocean waves and nonlinear optics, it has been estab-
lished that the presence of nonlinearity on top of dispersion can 
lead to changes in the statistical properties of the system. Often 
rogue waves and the associated large tails in the PDF can be ob-
served in experiments or numerical simulations from an initially 
incoherent wave field [13,14]; lower probability of extreme events 
than the Gaussian predictions can also be encountered [15,16]. In 
all those cases the nonlinearity plays a key role in creating corre-
lations among modes that ultimates in a deviations from Gaussian 
statistics.

In this Letter we present a very simple relation which can be 
derived from a family of universal nonlinear dispersive partial dif-
ferential equations that allows one to relate the changes in the 
statistical properties of the wave field to the changes of its Fourier 
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spectrum. Specifically, our focus is on the normalized fourth-order 
moment of the PDF which measures the relevance of the tails of 
the distribution with respect to the core. Large values of such mo-
ment imply the presence of heavy tails in the distribution and 
higher probability of extreme events. We show analytically, with-
out any approximation, that an increase of the spectral bandwidth 
results in an increase/decrease of extreme events in focusing/de-
focusing regime. Here, we will first discuss the 1D+1 integrable 
Nonlinear Schrödinger (NLS) equation problem and then we will 
extend the result to non-integrable NLS type of equation in 2D+1 
and confirm our results with extensive numerical simulations.

2. One-dimensional propagation

The NLS equation is a universal model for describing nonlinear 
dispersive waves. For the present discussion, we will consider the 
NLS equation written as follows:

i
∂ A

∂x
= β

∂2 A

∂t2
+ α|A|2 A, (1)

where α and β are two constant coefficients that depend on the 
physical problem considered. If αβ > 0 then the equation is known 
to be of focusing type, while if αβ < 0 the equation is defocusing. 
Note that equation (1) is written as an evolution equation in space 
rather than in time; this notation is common in nonlinear optics 
and it is also suitable in hydrodynamics for describing the evolu-
tion of waves in wave tank experiments. The general problem that 
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one wish to answer is the following: given an incoherent time se-
ries characterized by some statistical properties at one boundary 
of the domain, what is the PDF of the intensity of the wave field 
along the tank or along the fiber? Will rogue waves appear? We 
stress that our goal here is not to establish the validity of the NLS 
equation in a specific field but to highlight a fundamental mecha-
nism that leads to the formation of extreme or rogue waves.

We start by the definition of the normalized fourth-order mo-
ment of the NLS variable |A|:

κ = 〈|A|4〉
〈|A|2〉2

=
∫ |A|4 P (|A|)d|A|

(
∫ |A|2 P (|A|)d|A|)2

, (2)

where P (|A|) is the probability density function of the wave en-
velope |A| and 〈...〉 denotes the expected value. By definition κ
weights the relevance of tails of the PDF. Our work is based on 
the (now trivial) observation that the nonlinear part of the Hamil-
tonian is strictly related to κ . Indeed, we consider the following 
Hamiltonian density which is conserved for equation (1):

H = 1

T

T∫
0

β

∣∣∣∣∂ A

∂t

∣∣∣∣
2

dt − 1

T

T∫
0

α

2
|A|4 dt. (3)

We then apply the expected value operator on the above equation 
to get:

〈H〉 = 1

T

T∫
0

β〈
∣∣∣∣∂ A

∂t

∣∣∣∣
2

〉dt − 1

T

T∫
0

α

2
〈|A|4〉dt. (4)

Assuming that A(x, t) is a statistically stationary process in the in-
terval [0, T ], then 〈|A|4〉 is time independent and Eq. (4) can be 
re-written as follows:

〈H〉
〈N〉 = β�(x)2 − α

2
〈N〉κ(x) (5)

with 〈N〉 being the ensemble average of the number density of 
particles defined as

〈N〉 = 1

T

T∫
0

〈|A(x, t)|2〉dt = 〈|A(x, t)|2〉, (6)

(the last equality holds for a statistical stationary process) and

�(x) =
√∑

n〈( 2π
T n)2|An(x)|2〉∑
n〈|An(x)|2〉 , (7)

with An(x) being the Fourier coefficients defined as

An(x) = 1

T

T∫
0

A(x, t)e−i 2π
T ntdt. (8)

Note that periodic boundary conditions in t have been assumed 
in order to write the Fourier series. The quantity �(x) defined by 
Eq. (7) is nothing but the definition of the spectral bandwidth (see 
also [17]). Evaluating the expression (5) at x = x0 and at a generic 
point x, after eliminating 〈H〉/〈N〉 from the two resulting equa-
tions, we get the following exact relation (note that 〈H〉 and 〈N〉
do not depend on space and time):

κ(x) = κ(x0) + 2
β

α

1

〈N〉
[
�(x)2 − �(x0)

2
]
. (9)

The invariance of the Hamiltonian of the NLS equation has also 
been used in [18] to derive an approximate expression that re-
lates the spectral bandwidth to the amplitude of the highest wave 
Fig. 1. Evolution of κ for the focusing NLS equation (α = 2, β = 1). In the inset the 
evolution of the spectral bandwidth is shown.

Fig. 2. Evolution of κ for the defocusing NLS equation (α = −2, β = 1). In the inset 
the evolution of the spectral bandwidth is shown.

during the evolution of a deterministic wave group. Equation (9)
implies that the variation of the fourth-order moment is directly 
related to the variation of the spectral bandwidth. From it, we 
can state that in the focusing regime, β/α > 0, an increase of the 
spectral bandwidth leads to an increase of fourth-order moment; 
therefore, we expect to observe more extreme or rogue waves. On 
the other side, in the defocusing regime, β/α < 0, the same in-
crease of the spectral bandwidth is accompanied by a decrease 
of κ .

In what follows, we consider a few numerical examples that 
emphasize the above results; without loss of generality, we solve 
the NLS equation (1) with α = ±2 and β = 1, starting from an 
initial condition characterized by the following frequency Fourier 
spectrum:

An(x = 0) =
√

a0e
− 4π2n2

T 2σ2 eiφn , (10)

where the phases φn are distributed uniformly in the [0, 2π) inter-
val. The numerical simulations are performed by using a pseudo-
spectral method with 4096 points. The numerical values of a0 and 
σ 2 are 1.129 and 104, respectively. The statistical properties of 
the random wave fields are computed from an ensemble of 104

realisations of the random initial condition. Because of the lat-
ter choice, the PDF of the real and imaginary part of A(t, x = 0)

are Gaussian, the PDF of |A(t, x = 0)| is distributed according to 
the Rayleigh distribution having κ = 2, and the PDF of the inten-
sity |A(t, x = 0)|2 is exponential. In Figs. 1 and 2 we show κ and 
the spectral bandwidth � as a function of the evolution variable x
for the focusing, α = 2, and the defocusing case, α = −2, respec-
tively. It is interesting to note that, regardless of the sign of α, the 
spectral bandwidth always increases; however, while κ increases
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Fig. 3. PDF of the normalized intensity I = |A(t, x)|2/N for both focusing (green 
line) and defocusing (blue line) NLS equation calculated for x > 20. The exponential 
distribution is also shown as a red line. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

in the focusing case, it decreases in the defocusing one. As was 
mentioned, high values of κ implies heavy tails in the PDF. In-
deed, in Fig. 3 the PDF of the normalized intensity I = |A(t, x)|2/N
computed after κ has reached an equilibrium state, (x > 20), is 
shown for both the focusing and the defocusing case. Numerical 
results are compared with the exponential distribution e−I ; devia-
tions from such distribution are observed for both cases, however, 
consistently with our derivation, the focusing case shows heavy 
tails, while in the defocusing one, the distribution is below the ex-
ponential prediction.

3. Two-dimensional propagation

We now consider the NLS in two horizontal dimensions written 
as an evolution equation in time:

i
∂ A

∂t
=

(
β

∂2 A

∂x2
+ γ

∂2 A

∂ y2

)
+ α|A|2 A (11)

with γ = ±1. In the water wave context, equation (11) with α =
β = 1 and γ = −1 arises in the deep water regime and it describes 
the evolution of the complex wave envelope in weakly nonlinear 
and narrow band (both in the direction of propagation and in the 
its transverse direction) approximations. The second derivative in 
the y direction plays the role of diffraction and the equation is 
known as the Hyperbolic NLS. On the other hand, equation (11)
with the choice of γ = β = −1 and α = 1, also known as the defo-
cusing Gross–Pitaevskii equation (GPE), describes for instance the 
dynamics of a two-dimensional Bose–Einstein condensate. We now 
assume that the system in homogeneous in the domain Lx × L y

and we follow the same procedure as in the one dimensional case. 
Keeping in mind that now the κ evolves in time, the same reason-
ing as before can be applied to get (we now assume homogeneity 
of the wave field):

κ(t) = κ(t0) + 2

α〈N〉×{
β

[
Kx(t)

2 − Kx(t0)
2
]
+ γ

[
K y(t)

2 − K y(t0)
2)

]}
,

(12)

where

Kx(t) =

√√√√√∑
k,l〈

(
2π
Lx

k
)2 |Ak,l(t)|2〉∑

k,l〈|Ak,l(t)|2〉 , (13)

and K y(t) is defined in a similar fashion with the only difference 
that in the brackets Lx is replaced by L y and k with l.
Fig. 4. Evolution of the spectrum for the GPE at different times. The initial condi-
tions are provided in equation (14). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

As in the one dimensional case, we show some instructive nu-
merical simulations of equation (11). For all cases considered, the 
initial condition is characterized by the following Fourier spec-
trum:

Ak,l(t = 0) =
√

a0e
−

(
2π
L

)2
k2+l2

σ2 eiφk,l (14)

with a0 = 7.8 × 10−5, σ = √
10, L = Lx = L y = 512 and phases 

are taken as randomly distributed. Numerical simulations are per-
formed with a resolution of 1024 × 1024 with �x = �y = 0.5. To 
improve the statistical convergences, 10 different simulations are 
performed for each case with different initial random phases.

We start by considering the GPE: generally, given an initial 
condition localized in Fourier space, the tendency is to observe a 
broadening of the spectrum, thus, due to the fact that β = γ = −1, 
according to equation (12) we expect to observe a decrease of κ . 
Indeed, in Fig. 4, we show a density plot of the two dimensional 
Fourier spectrum at t = 0, 10, 500, 1000. It is interesting to ob-
serve that the spectrum broadens isotropically and a condensate 
at the mode (k, l) = (0, 0) forms at large times (red spot in the 
Fig. 4), see [19,20] for details. The initial value of κ , shown in 
Fig. 5, decreases from the value of 2: starting from a spectrum 
characterized by random phases, extreme amplitudes are statisti-
cally not expected in the defocusing GPE. The situation is different 
for the hyperbolic NLS where the equation is focusing in x and de-
focusing in the y direction. Because of the opposite signs in the 
linear terms, we expect an initial non-isotropic evolution. Indeed, 
as shown in Fig. 6, the spectrum evolves more rapidly in the kx
direction, probably due to some fast evolution related to an insta-
bility of the modulational instability type, see [21]. This results in 
a fast increase of κ , see Fig. 7 up to t = 5. After this initial tran-
sient, the spectrum grows also in the transverse direction and the 
value of κ reduces accordingly, reaching a Gaussian value. A snap-
shot of the intensity of the wave field taken at the time when κ
has a maximum is reported in Fig. 8: clearly, the field is character-
ized by the presence of a number of rogue waves embedded in an 
incoherent wave field.

Before concluding, we find opportune to make a comment on 
the evolution of the spectral bandwidth. So far, we have discussed 
an analytical result which provides an interesting perspective on 
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Fig. 5. κ as a function of time for numerical simulations of the GPE. The initial 
conditions are provided in equation (14). In the inset the evolution of the spectral 
bandwidth is shown. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 6. Evolution of the spectrum for the hyperbolic NLS equation at different times. 
The initial conditions are provided in equation (14). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

the generation of heavy tails. However, equations (9) and (12) are 
not closed: an evolution equation for the spectrum is still required. 
The standard approach consists in considering the weakly non-
linear limit and derive the wave kinetic equation (see [22]) from 
the (non-integrable) NLS type of equation using the wave turbu-
lence theory. In such an equation the linear energy is a constant 
of motion; this is a consequence of the fact that the transfer of 
energy and number of particle is ruled by exact resonance in-
teractions. Therefore, even though the spectrum may evolve, the 
spectral bandwidth (related to the quadratic contribution to the 
Hamiltonian density) remains constant. Thus, if one is interested 
in studying changes in statistical properties of the wave field, the 
need of considering non-resonant interactions in the kinetic equa-
tion is essential, see [15,23–26] for details on the subject.

4. Conclusions

In conclusion, here we have presented an identity for a class of 
equations characterized by the NLS nonlinearity that relates the 
Fig. 7. κ(t) as a function of time for numerical simulations of the hyperbolic NLS. 
The initial conditions are provided in equation (14). In the inset, the evolution of 
the spectral bandwidth is shown. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. |A|2 as a function of x and y at the time of the maximum of κ , see Fig. 7.

variation of the fourth-order moment of the probability density 
function of the wave envelope with the variation of the spectral 
bandwidth. This result sheds some light on the statistical origin 
of rogue waves in systems described by such type of equations. 
It should be noted that our approach is rather general as it can 
be applied whenever a conserved quantity of a partial differential 
equation contains a moment of the distribution. For example, in 
the Korteweg–de Vries (KdV) equation, the Hamiltonian is directly 
connected to the third-order moment; therefore, given the evolu-
tion of the spectrum, a direct information on the asymmetry of the 
PDF for the wave displacement is available.
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