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a b s t r a c t

We study the three-dimensional forced–dissipated Gross–Pitaevskii equation. We force at relatively low
wave numbers, expecting to observe a direct energy cascade and a consequent power-law spectrumof the
form k−α . Our numerical results show that the exponent α strongly depends on how the inverse particle
cascade is attenuated at ks lower than the forcing wave-number. If the inverse cascade is arrested by a
friction at low ks, we observe an exponent which is in good agreement with the weak wave turbulence
prediction k−1. For a hypo-viscosity, a k−2 spectrum is observed which we explain using a critical balance
argument. In simulations without any low k dissipation, a condensate at k = 0 is growing and the
system goes through a strongly turbulent transition from a 4-wave to a 3-wave weak turbulence acoustic
regime with evidence of k−3/2 Zakharov–Sagdeev spectrum. In this regime, we also observe a spectrum
for the incompressible kinetic energy which formally resembles the Kolmogorov k−5/3, but whose correct
explanation should be in terms of the Kelvin wave turbulence. The probability density functions for the
velocities and the densities are also discussed.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

After the seminal papers by A. Kolmogorov in 1941, it is well
established that, apart from small corrections due to intermit-
tency [1], the energy spectrum, E(k), of the velocity fluctuations for
high Reynolds number hydrodynamic turbulence shows a power
law of the form E(k) = CP2/3k−5/3, where C is the dimensionless
Kolmogorov constant and P is the flux of energy in the wave-
number space. This is a very strong result that has been con-
firmed experimentally and numerically by the direct integration
of the Navier–Stokes equation. It can be obtained via dimensional
considerations or as a solution of phenomenological turbulence
closures [1]. However, so far, this result has not been obtained ana-
lytically from the Navier–Stokes equation. Many decades after the
work by Kolmogorov, it has been discovered by Zakharov in 1965
that systems of weakly nonlinear, dispersive, random waves be-
have qualitatively in a similar way [2]. Namely, the nonlinear in-
teraction between waves can produce other waves with different
wavelengths and so on, generating a cascade process leading to
power-law wave spectra similar to the Kolmogorov spectrum. Be-
cause of such an analogy, they are called Kolmogorov–Zakharov
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(KZ) spectra, and the research field is known as Weak Wave Tur-
bulence (WWT). Description ofWWT turns out to bemore accessi-
ble than one of the hydrodynamic turbulence because nonlinearity
in the dynamical equations, although still crucial, is small. In the
WWT framework, a systematic approach based on averaging the
dynamical equations leads to a Boltzmann-like equation known
as the wave kinetic equation which describes the evolution of the
spectrum of the turbulent wave field [3]. One remarkable property
of WWT is that, in contrast to hydrodynamic turbulence, the KZ
spectra are exact stationary solutions of the wave kinetic equation
[2,4]. Unlike the thermodynamic solutions, forwhich the integrand
of the collision integral is identically zero, the KZ solutions corre-
spond to non-trivial states for which a source, a sink and awindow
of transparency (inertial range) are required. Since this discovery,
WWT has found applications for a vast variety of physical systems
ranging from quantum to astrophysical scales; see books [3,5] and
references therein.

In this paper, we consider nonlinear dispersivewaves described
by the Gross–Pitaevskii equation (GPE)

i
∂ψ

∂t
+ ∇

2ψ + σ |ψ |
2ψ = 0. (1)

This partial differential equation has attracted the attention of
many researchers because it describes propagation of optical
pulses in nonlinearmedia [6] andweakly interacting boson gases at
very low temperatures called Bose–Einstein condensates (BEC) [7].
In the present paper, we will be concerned with the latter case
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and we will focus on the three-dimensional (3D) case. Complex
wave function ψ is usually called order parameter and σ = ±1,
depending on the physics of the problem: the defocusing case,
σ = −1, represents repulsive potential between bosons, while
the focusing one, σ = 1, considers an attractive interaction. GPE
has recently become important in fluid dynamics because BEC is a
good example of superfluid, i.e. a fluid with zero viscosity. Indeed,
using the Madelung transformation, the GPE can be mapped onto
an Euler equation which differs from the classical one only by
an extra term named quantum pressure. Therefore, numerical
computations of the 3D defocusing GPE have become a tool for
investigating superfluid and quantum fluid dynamics. Phenomena
such as vortex reconnections [8], formation of a condensate [9], and
formation of power-law spectra [10–13] have been observed.

The purpose of this paper is to revisit and investigate the
turbulence characteristics in the 3DdefocusingGPEwith particular
attention to the forced and dissipated case. An interesting issue to
be addressed is verification of the WWT theory predictions which
offer a solid theoretical tool for deducing statistical quantities in
systems of dispersive, weakly interacting waves. As we will show
in the next Section, when the nonlinearity becomes large, the
WWT theory fails and the concept of critical balance (CB) will be
introduced in order to explain the numerical results.

The paper is organized as follows. In Section 2 we present
the theoretical background on the GPE model revisiting some
mathematical aspects, including quantum vortices and general
properties of quantum turbulence. In Section 3 we introduce the
forced–dissipatedGPE andpresent predictions for steady turbulent
states: in particular we discuss the WWT for the 4-wave and the
3-wave regimes and the CB conjecture. Section 4 is dedicated
to presenting numerical results in three different regimes: free
condensation at large scales (RUN 1), dissipation at low wave
numbers by friction (RUN 2) and by hypo-viscosity (RUN 3). Finally,
Section 5 contains the conclusions.

2. Theoretical background

In the paper we will consider the following non-dimensional
defocusing GPE model,

i
∂ψ(x, t)
∂t

+ ∇
2ψ(x, t)− |ψ(x, t)|2ψ(x, t) = 0. (2)

The nonlinear term is consequence of the local self-interaction
of the bosons and is proportional to the gas density ρ(x, t) =

|ψ(x, t)|2. The system is conservative and its Hamiltonian is

H =

∫ 
|∇ψ(x, t)|2 +

1
2
|ψ(x, t)|4


dx = Hlin(t)+ Hnl(t). (3)

In the latter relation the total energyH has been split into a part re-
sponsible for the linear dynamics, Hlin(t) =


|∇ψ(x, t)|2dk, and

another coming from the nonlinear term,Hnl(t) = 1/2


|ψ(x, t)|4
dk. In the following, we will use the energy densities defined as
Elin = Hlin/V and Enl = Hnl/V where V is the total volume. The
system conserves also the mass defined as

M =

∫
|ψ(x, t)|2dx =

∫
ρ(x, t)dx. (4)

An important quantity that characterizes stationary and
dynamical properties is the healing length ξ : physically, it
estimates the distance over which the field ψ(x, t) recovers its
bulk valuewhen subject to a localized perturbation. This definition
refers to the case of a single perturbation in a uniform field but can
be extended in a statistical sense to even highly perturbed cases as

ξ =
1

√
⟨ρ⟩

, (5)
Fig. 1. Phase field θ(x, t)with a 2D vortex.

where ⟨·⟩ denotes the spatial averaging. The healing length
measures, on average, the scale at which the nonlinear term
becomes comparable with the linear one. Dual to the scale ξ is the
wave-number kξ = 2π

√
⟨ρ⟩.

The GPE has been widely studied in the fluid dynamics
framework. Indeed, the Madelung transformation ψ(x, t) =√
ρ(x, t)eiθ(x,t), maps the GPE into a system of two equations

∂ρ

∂t
+ ∇ · (ρv) = 0

ρ


∂vj

∂t
+ vk

∂vj

∂xk


= −

∂p
∂xj

+
∂Σjk

∂xk

(6)

for the real density field ρ(x, t) and a real velocity field v(x, t) =

2∇θ(x, t). The first equation represents a continuity equation
for a compressible fluid and the second one is a momentum
conservation law. The terms in the r.h.s of the latter equation can
be thought as a pressure p = ρ2 and a ‘‘quantum stress’’ tensor,
Σjk = ρ

∂2(ln ρ)
∂xj∂xk

. The quantum stress term becomes important at
scales of the order of ξ . The system (6) describes so an inviscid and
irrotational fluid flow.

2.1. Quantum vortices

Even if the fluid is irrotational, particular types of vortex
solutions exist. This is true if the region occupied by the irrotational
flow is not simply connected, e.g., if there are phase defects
at locations of zero density. Moreover, differently from classical
fluids, such vortices carry quantized circulation and therefore
are called quantum vortices. To better understand their structure,
we first consider a two-dimensional (2D) system. A necessary
condition to assure the continuity of the complex fieldψ is that the
phase changes by1θ = 2πn, where n ∈ N . As the velocity field v
is proportional to the gradient of the phase, it is easy to check that
the circulation around a vortex

C =


v · dl = 2


∇θ · dl = 21θ (7)

is quantized. In Figs. 1 and 2 we show respectively the phase field
θ(x, t) and the density field ρ(x, t) in the neighborhood of a 2D
vortex embedded in a uniform density field. The vortex core size
is order of ξ because, by definition, the healing length measures
the size of a generic order-one fluctuation on the uniform solution.
By measuring circulation it is possible to distinguish between
clockwise and anti-clockwise vortices. Note another important
difference from the classical fluids arising from the presence of the
quantum stress: vortices with the opposite sign can approach each
other and annihilate.

In 3D, the vortices are more complicated objects consisting of
continuous lines or loops with different topologies. These struc-
tures can oscillate producing Kelvin waves [14], be transported by
the fluid, induce a fluid motion, and reconnect [8,15]. The vortex
energy is proportional, in the leading order, to its length and can
be transferred to the fluid via sound waves [16]. An example of all
these vortex motions is shown in Fig. 3: here we plot a snapshot
of low density regions, associated with the vortex cores, obtained
in a numerical simulation of the GPE in a periodic cubic box with
twelve straight vortices as initial condition [17].
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Fig. 2. Density field ρ(x, t)with a 2D vortex.

Fig. 3. Plot of the low density field ρ(x, t) below a certain threshold in a freely
decay simulation.

2.2. Quantum turbulence

Vortex–vortex dynamics (collective dynamics of vortex bun-
dles, reconnections of vortex lines), vortex-sound (radiation and
scattering of sound by vortices) and sound–sound interactions
(acoustic wave turbulence) and the dynamics of the vortex itself
(Kelvin waves, vortex rings) represent the ingredients of quantum
turbulence (QT). If forced at the scales larger than the mean inter-
vortex separation ℓ ≫ ξ , QT develops as the classical Richardson
cascade characteristic of Navier–Stokes turbulence until the scale
ℓ. At scales ≤ ℓ the discreteness of the quantized vortex field be-
comes essential and the further energy cascade to lower scales is
very different than the one of classical fluids with continuous vor-
ticity [18–20]. After some reconnections and other crossover pro-
cesses near the transitional scale ℓ [21,22], the energy cascade is
carried to the scales<ℓ by Kelvin wave cascade until, at a very low
scale, it is radiated into sound [18–20,23–27].

In the recent years, GPE has become a popular model for
studying QT via numerical simulations [10,9,11,12,28,29]. The
pioneering paper of Nore et al. [10] has already showed similarities
between the 3D GPE and the classical Navier–Stokes turbulence,
including observations of the famous Kolmogorov 5/3-spectrum.
This spectrum was observed for scales >ℓ (with ℓ > ξ ), which
agrees with the view that at this scales the discreteness of the
vortex lines is inessential, and the turbulence picture is basically
classical Kolmogorov. However, in several follow-up works
[11,12,28] the 5/3-spectrumwas reported to extend to the smaller
scales, between ℓ and ξ , where the classical Kolmogorov picture is
not expected to be valid theoretically. Later in this paper we will
comment on this apparent paradox.

Numerical quantities usually measured in QT can be defined
in the fluid dynamic framework. Namely, the total energy is
divided into kinetic, quantum and internal energy of the system
as follows [10]

H = Ekin(t)+ Equ(t)+ Eint(t), (8)

where Ekin(t) =
1
2

 √
ρv

2 dx is the kinetic energy, Equ(t) =

1
2

 
2∇

√
ρ
2 dx is the quantum energy and Eint(t) =

1
2


ρ2dx =
Hnl(t) the internal energy. Moreover, the quantity in the integrand
of the kinetic energy is usually divided, using the Helmholtz’s
theorem, into a solenoidal (incompressible) and an irrotational
(compressible) vector fields
√
ρv = (

√
ρv)i + (

√
ρv)c . (9)

The incompressible part, satisfying ∇ · (
√
ρv)i = 0, is associated

to the vortex dynamics. The compressible part, which satisfies
∇ × (

√
ρv)c = 0, is usually related to the sound waves. Note that

the aforementioned result for the k−5/3 power-law behavior refers
always to the spectrum of the incompressible kinetic energy E i

kin.

3. Forced–dissipated GPE

The aim of the present paper is to study steady turbulent states
in the GPE model, with particular interest in observing cascades
from large to small scales. Therefore, in the spirit of classical
turbulence, we build a system including forcing and dissipation
terms in the GPE. The sustained model results in

i
∂ψ(x, t)
∂t

+ ∇
2ψ(x, t)− |ψ(x, t)|2ψ(x, t) = F + D, (10)

where the forcingF injectsmass and energy, while the dissipation
D removes them. As a consequence, the mass and the energy are
no longer constants of motion. However, if a steady turbulent state
is reached, the quantities Ḣ(t) and Ṁ(t) are again zero.

The forcing mechanism F can be thought as an intrinsic
instability of the system or an external pumping. In the following
we will consider always the latter case: an incoherent source of
particles (bosons) injected into the system at a constant rate with
a sufficiently small energy (low temperature) to assure the validity
of GPE.

Considering the dissipation term D , we distinguish between
two cases: small and large-scale damping mechanisms. The first
one can be associated to the interactionwith the thermal cloud [30]
or to the evaporative cooling technique. This term, responsible
for absorbing the great majority of energy, will always be present
in the model. Moreover, we will consider in some numerical
simulations also a dissipation mechanisms acting at large scales.
We are not aware at present of any experimental technique
to mimic such kind of damping. We will however introduce it
artificially in order to better understand the direct energy cascade
process and reach steady turbulent states.

3.1. Weak wave turbulence predictions

TheWWT furnishes somepredictions forwave spectra in steady
states. In order to introduce WWT, let us put the system into a 3D
periodic box andwrite GPE (neglectingF andD) in Fourier space:

i
∂ψ̃1

∂t
− ω(k1)ψ̃1 =

−
k2,k3,k4∈Z3

ψ̃∗

2 ψ̃3ψ̃4δ(k1 + k2 − k3 − k4).(11)

Here ψ̃i ≡ ψ̃(ki, t) is the Fourier transform of ψ(x, t) and
ω(k) = k2 is the dispersion relation of the system (hereafter k =

|k|). The WWT theory, taking the infinite-box limit, considering
small nonlinearity, and assuming space homogeneity and random
phases and amplitudes (RPA) of the initial wave amplitudes,
provides a statistical closure of (11). The closure predicts
the behavior of statistical quantities such as correlators ⟨ψ̃1ψ̃2 · · ·

ψ̃nψ̃
∗

n+1ψ̃
∗

n+2 · · · ψ̃∗
n+m⟩, where the average is performed over the

random initial data. In this framework the simplest non-trivial
correlator is the second order

⟨ψ̂∗

i ψ̂j⟩ =


|ψ̂i| |ψ̂j|ei(θi−θj)


= niδ(ki − kj), (12)

where the quantity ni ≡ n(ki, t) is called wave-action spectrum.
The RPA assumption closes the system by theWick decomposition,
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a mechanism which splits the higher order correlators as sums
of products of second order correlators [31–33]. This procedure,
when applied to the GPE model, leads to the following 4-wave
kinetic equation for the evolution of the wave-action spectrum [34]
∂n1

∂t
= 4π

∫
n1n2n3n4


1
n1

+
1
n2

−
1
n3

−
1
n4


× δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)dk234, (13)

where dk234 ≡ dk2dk3dk4.
This is an integro-differential equation which models ‘‘wave

collisions’’, in analogywith Boltzmann kinetic equation for particle
collisions. Physically, it says that for timesmuch longer that the fast
wave periods Ti = 2π/ωi, the wave amplitudes ψ̃i are effectively
coupled only if they satisfy the following resonant conditions

k1 + k2 = k3 + k4

ω1 + ω2 = ω3 + ω4.
(14)

Eq. (13) has the following invariants, M =

n(k, t) dk, P =


n(k, t) k dk, and E =


n(k, t)ω(k) dk that are the total number

of particles (or the mass), the momentum and the energy respec-
tively. Moreover, the dynamics described by the kinetic equa-
tion is irreversible in time and an entropy measure can be
defined. Three trivial functions that cancel the integrand in (13)
are n(1)k = A, n(2)k = (B · k)−1 and n(3)k = Ck−2 with A, B, and
C constants. By combining these solutions, the general thermody-
namic solution takes the form

n(RJ)k =
T

µ+ (u · k)+ k2
, (15)

where µ is the chemical potential, u is the macroscopic velocity
and T is the temperature of the system. In an isotropic condition,
the macroscopic velocity is zero and the relation (15) assumes the
form known in literature as Rayleigh–Jeans (RJ) thermodynamic
equilibrium distribution. As the distribution is not convergent for
large ks, T and µ can be evaluated based on the known mass and
energy of the system only by introducing an ultraviolet cutoff, as
proposed in [35].

In presence of an external forcing and damping, besides the
RJ distribution, two other steady solutions may exist, namely the
KZ spectra discussed in the introduction. These solutions have
the form of a power law nk = ck−α , where c is a dimensional
constant. They can be obtained analytically by applying a change
of integration variables known as the Zakharov transformation [3],
or by a dimensional analysis [36]. The value of the exponent α
depends on the particular wave model. KZ solutions correspond
to constant fluxes of conserved quantities in the momentum space
(turbulent cascades).

The GPE model has two positive invariants, the mass M and
the energy E. It can be shown (see Appendix A) that energy has
a direct cascade, i.e. from large to small scales, while the mass
an inverse one, from small to large scales. The corresponding KZ
exponents are αE = 3 and αM = 7/3 respectively. Hereafter we
present results in terms of the one-dimensional spectrum n1D(k),
obtained from n(k) by integrating out the angular variables, i.e.
n1D(k) = 4πk2nk. In this notation the KZ solutions are

n(E)1D (k) = 4πc(E)k−1

n(M)1D (k) = 4πc(M)k−1/3.
(16)

These solutions represent constant fluxes of E and M and,
therefore, they must be sustained by an external forcing and
dissipation. Even tough the KZ spectra are found for infinite inertial
ranges, they are expected in finite systems provided the scales
of F and D are widely separated in Fourier space and provided
the interactions of the wave modes are local. The locality of the
KZ solutions (16) is checked in Appendix B: the energy cascade
turns out to be marginally nonlocal and its locality is restored by a
logarithmic correction, while the inverse particle cascade is local.
3.2. Transition to 3-wave interactions

Eq. (13) describes a 4-wave interaction processwhich is respon-
sible for the direct and the inverse cascades. When the inverse cas-
cade is not damped at low ks, it leads to accumulation of particles
at these scales which can alter the 4-wave dynamics. Respectively,
the zero-mode nk=0(t), related to the uniform part of the fieldψ in
physical space, will grow. This behavior can be interpreted as the
Bose–Einstein condensation process. When the condensate frac-
tion becomes large, the kinetic equation (13) ceases to be valid. In-
deed, suppose that a large fraction of the wave-action is present at
the zero-mode, thereby ψ(x, t) = c(t) + ϵφ(x, t), where φ rep-
resents small fluctuations (ϵ ≪ 1). By substituting this ansatz into
GPE (1), we find, at the order ϵ0, the evolution equation for the con-
densate fraction,

i
∂c
∂t

− |c|2c = 0. (17)

Its solution is c(t) = c0 e−ic20 t , where c0 is a real positive constant.
Thus, the condensate amplitude rotates in the complex plane with
an angular velocity proportional to its square modulus. In the next
order in ϵ, we obtain a linear equation for the fluctuations on the
condensate background:

i
∂φ

∂t
(x, t)+ ∇

2φ(x, t)− 2c20φ(x, t)+ c0e−2ic20 tφ∗(x, t) = 0. (18)

Diagonalizing the linear dynamics in Fourier space, one can
show that the linear wave modes oscillate at the Bogoliubov fre-
quency [34,37],

ω(k) = ±k

k2 + 2c20 . (19)

In the limit of small ks or strong condensate fraction c0, when
k2 ≪ c20 , the fluctuations are acoustic waves with the speed of

sound ω/k ≈


2c20 .

In the next order in ϵ, when weak nonlinearity is taken into
account for the fluctuations, it is possible to use the WWT theory
and derive a new kinetic equation describing 3-wave interactions
of the Bogoliubov quasi-particles [34,37]:

∂n1

∂t
=

∫
(R231 − R123 − R312)dk12, (20)

where
R123 = 2π |V123|

2δ(k1 − k2 − k3)δ(ω1 − ω2 − ω3)

× (n2n3 − n1n2 − n1n3) (21)
and the analytical formof the scatteringmatrixV123 is given in [37].
Eq. (20) describes 3-wave interactions 1 � 2 which conserve
only the energy and not the mass. Thus, only the energy cascade
KZ solution is relevant in this regime. For the large-scale (strong
condensate) limit k2 ≪ c20 , the direct cascade KZ spectrum takes
the form E1D(k) ∼ k−3/2 predicted by Zakharov and Sagdeev for
the 3D acoustic WWT [38]. Because most of the wave-action in
this case is in the condensate, the 1D energy spectrum is E(E)1D (k) ∼

c20n
(E)
1D (k) [37]. Therefore, the wave-action spectrum for the energy

cascade in the acoustic regime is

n(E)1D (k) ∼ k−3/2. (22)

3.3. Critical balance conjecture

In some physical situations, wave turbulence fails to be weak,
and the wave spectrum saturates at a critical shape such that
the linear term is of the same size as the nonlinear term
for each mode k. Such a critical balance appears to be typical
for a wide range of physical systems, ranging from magneto-
hydrodynamic turbulence [39], to the rotating and stratified
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geophysical systems [40]. The most famous example is the Phillips
spectrum of the gravity water waves [41,42], in which case the
saturation at the critical value occurs due to wave breaking.

In the GPE model, similar situation may occur when an
equivalent of wave breaking process is active in the system.
Namely, we will see that when the low-k range is over-dissipated
by strong hypo-viscosity (RUN 3), the inverse particle cascade
tends to accumulate at low k’s (infrared bottleneck) until a critical
balance is reached and the spectrum is saturated. Indeed, for
the inverse cascade to exist the wave turbulence must be weak,
because only then the Fjørtoft argument works (see Appendix C).
However, when the linear and the nonlinear terms, locally in
Fourier space, are of the same order, the inverse cascade stops and
so does the infrared bottleneck accumulation. This is precisely the
mechanism of reaching the critical balance condition in this case.

Now we present an estimate for the critical balance spectrum
in the GPE model. Equating the linear and the nonlinear terms in
Fourier space gives

k2|ψ̃k| ∼ |ψ̃k|
3k6

⇒ k−4
∼ |ψ̃k|

2.
(23)

Note that we have replaced each dk in the integration by k3
thereby assuming that only the wave amplitudes with similar
ks are correlated in Fourier space. Thus, for the 1D wave-action
spectrum in the critical balance regime, we have

n(CB)1D (k) ∼ k−2. (24)

4. The numerical experiments

As we want to understand the basic properties of the GPE
turbulence, we choose to deal with the simplest configuration:
triple periodic boundary condition and uniform mesh grid. With
this choice we can use the discrete Fourier transforms which are
numerically fast [43,44]. In our numerics the complex wave field
ψ is a double precision variable defined in space over 2563 points.
The simulation boxhas side L = 256 and so the Fourier spacewidth
is Lk = 2π with resolution1k = 2π/256.Without considering for
the moment the forcing and the dissipation terms, the GPE model
(1) can bewritten in the physical space as a sumof a linear operator
L and a nonlinear one G

i
∂ψ

∂t
= (L + G) ψ, (25)

where L = −∇
2 and G = |ψ |

2. We use a split step method to
solve separately the contributions of the two operators in time.
This choice is very useful because the linear operator has the
exact solution in Fourier space, ψ̃(k, t + 1t) = ψ̃(k, t) e−i|k|

21t ,
while the nonlinear one has the analytic solution ψ(x, t + 1t) =

ψ(x, t) e−i|ψ(x,t)|21t in the physical space. At each time step 1t ,
we first evaluate the linear part in Fourier space and then use
this temporary solution to solve the nonlinear part in the physical
space.With this choice, the numerical error in the algorithm is only
due to the time splitting [45]. The time step is always 1t = 0.5,
chosen to be of the order of the shortest linear time 2π/ωmax.

Concerning the forcing and the dissipation, it appears conve-
nient to control F and D directly in Fourier space to gain a wide
inertial range. The forcing term acts to inject mass and energy in
the system. In all simulations, F modifies the first (linear) calcula-
tion half-step as follows

ψ̃(k, t +1t) =


ψ̃(k, t) e−i|k|

21t
+ Af0 eiϕ(k,t),

kmin ≤ |k| ≤ kmax

ψ̃(k, t) e−i|k|
21t ,

|k| < kmin ∪ |k| > kmax,

(26)
Table 1
Summary of the different numerical simulations performed. Here the hat operator
·̂ stands for the Fourier space operator, νh = 2 × 10−6, νl = 1 × 10−18, µ =

1 × 10 − 4, k⋆ = 91k and the forcing is defined in (26).

Cases Forcing Dissipation at low ks Dissipation at high ks

RUN 1 f0 = 0.1 None Dh = iνh(∇2)8ψ(x, t)
RUN 2 f0 = 0.1 D̂l = iθ(k⋆ − |k|)ψ̃(k, t) Dh = iνh(∇2)8ψ(x, t)
RUN 3 Various Dl = iνl(∇−2)8ψ(x, t) Dh = iνh(∇2)8ψ(x, t)

Fig. 4. Wave-action spectrum n1D(k, t) during initial stages of simulation. The time
unit τ refers to the linear time of the forcing scale.

where A ≃ 1.62×10−3. Thus, the pumping addmass and energy in
the region kmin ≤ |k| ≤ kmax with the function ϕ(k, t) uniformly
distributed in [0, 2π) and statistically independent in k-space and
time. We choose the forcing at relatively large scales, with kmin =

91k and kmax = 101k. A dissipation at high wave numbers is
added to halt the direct cascade and to prevent thermalization
effects.We find that an hyper-viscous termDh = iνh(∇2)8ψ(x, t),
where νh = 2×10−6, is effective in absorbing the high-k spectrum
and in preventing the aliasing and the bottleneck effects. This term
is added to the linear operator in Fourier space. Finally, different
types of dissipations at the large scales can be chosen. In this paper
we report three different setups, briefly summarized in Table 1,
whose results are discussed in the following.

4.1. RUN 1—free condensate growth

In the first simulation we study the evolution of the system,
initially empty, without any dissipation at low ks. At every time
step, the forcing term inputs mass 1M(t) and energy 1E(t) so
that M and E start to grow. Even if the forcing is acting at a
particular wave-number, the nonlinear interactions cause mass
and energy transfers to other modes. We have chosen the forcing
coefficient f0 such that the transfer becomes efficient for the
time step considered, namely sufficiently big to prevent sandpile
effects characteristic to mesoscopic turbulence [46,47]. One can
see in Fig. 4 that at early stages of the simulation the wave-
action spectrum n1D(k, t) evolves and spreads over the wave-
number space: the energy and the particles undergo a direct and
an inverse cascades respectively. After an initial transient time,
the linear energy density Elin(t) stops to grow, as clearly visible
in Fig. 5. Linear energy weights the high wave-number part of the
spectrumand its saturation is an evidence that the transfer to small
scales is now absorbed by the hyper-viscosity. On the contrary, as
no dissipation is present at the large scales, the inverse particle
cascade is not arrested and the nonlinear energy density Enl(t)
continues to increase.

4.1.1. Spectra
In Fig. 6 we present the 1D wave-action spectrum at two

different stages after the stabilization of the linear energy. The
spectrum plotted with dashed line is taken at early stages, when
the linear and the nonlinear energy densities are comparable: at
this point there is a good agreement with theWWT k−1prediction,
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Fig. 5. Linear Elin(t) and nonlinear Enl(t) energy densities during the RUN 1.

Fig. 6. Wave-action spectrum n1D(k, t) at two different stages of RUN 1. The 4-
wave and the 3-wave WWT predictions are also indicated by the lines with slopes
−1 and −3/2 respectively. Inset: evolution of the condensate component c0(t).
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Fig. 7. Dispersion relation at the final stage of RUN 1, when the condensate fraction
is strong. The white dashed line is the Bogoliubov dispersion (only the upper
branch). Inset: a zoom on the small ks zone to appreciate the shift due to the
presence of the condensate.

which is also plotted. The condensate component c0(t) continues
to increase during the simulation, as shown in inset of Fig. 6, and a
well defined series of peaks appears in the wave-action spectrum
at the final stage (continuous line). Such behavior is a clear sign
of 3-wave interactions, as reported in [48]. Note that the late
stage spectrum is consistent with the 3-wave Zakharov–Sagdeev
WWT prediction k−3/2. This acoustic regime is also confirmed by
evaluating the dispersion relation. The result, presented in Fig. 7,
shows the presence of two branches (one for the Bogoliubov mode
and another for its conjugate) shifted by the condensate velocity
oscillation c20 , in excellent agreement with the corresponding
Bogoliubov dispersion (19).

The observed evolution of the spectrum can be summarized as
follows. (a) At initial times the condensatewave amplitude ψ̃k=0(t)
is of the same order as the amplitude of other modes and the
dynamics is well described by the 4-wave WWT regime. (b) As
the inverse cascade is not halted, mass accumulates at low ks and
strong turbulence takes place in this transition. (c) Finally, when
the zero-mode becomes dominant over the fluctuations, the wave
turbulence is again weak and well described by the 3-wave WWT.
Fig. 8. Probability density function of the density field ρ at different time: early
stages (ta) and final stage (tb) in RUN 1. A normal distribution with mean µ and
standard deviation σ are indicated.

4.1.2. Condensation and density PDF
To access further information about the statistics of the

transition from the 4-wave to the 3-wave regime during the
condensation process, in Fig. 8 we show the probability density
function (PDF) of the density field ρ at initial and final stages.
At early stages the density remains small with a lot of low
density regions, which indicates the presence of numerous ‘‘ghost’’
(weakly nonlinear) vortices. Indeed, in the ideal 4-wave WWT
dynamics, the wave field would be nearly Gaussian, and the
respective density ρ would have an exponential (Rayleigh) PDF,
which would be a straight line (with a negative slope) in Fig. 8.
We see a significant deviation from the Rayleigh behavior, which
means that even at early stages (at time ta when the 4-wave
KZ spectrum is reported) the statistics already differed from the
Gaussian. The development of a maximum on the PDF of ρ is a
signature of the emerging condensate. As the inverse cascade is
not halted the condensate density keeps growing in time. At final
stages (at time tb when the 3-wave KZ spectrum is reported) the
density field shows a normal distribution behavior in the core of
the PDFwith a tail remaining at low density regions corresponding
to vortices (which are now strongly nonlinear). Note that themean
value of ρ at this time (0.428) is much greater than the standard
deviation (0.055) which means that the condensate density is
much stronger that the Bogoliubov fluctuations on the mean
density. This is a clear sign of the 3-wave WWT.

4.1.3. Vortices and velocity PDF
Now we focus on the vortex component represented by the

low-ρ PDF tail at t = tb. By plotting the iso-surfaces with small
density threshold (ρthr = 0.1) only one quantum vortex is found
in the computational box. We plot in Fig. 9 its evolution, showing
only a part of the total box. The vortex has a ring shape and it
propagates in the direction of the ring axis. The vortex core radius
is consistent with the healing length estimate ξ ≃ 1.5 = 1.51x.
Propagating Kelvin waves can be observed on the vortex line. We
will argue below that thesewaves are crucial for understanding the
5/3-spectrum of the incompressible kinetic energy.

In Fig. 10we plot the PDF of the single velocity components (the
data are normalized in order to compare different distributions).
The velocity PDF appears to have a dominant Gaussian core, which
is consistent with the 3-wave WWT. In addition, the velocity
PDF power-law tail with exponent −3 is another signature of
the thin vortex lines, whose velocity field falls off inversely
proportional to the distance from the line at short distances. Such
power-law velocity PDF behavior has already been observed in
superfluid turbulence experimentally [49] and numerically [29]
and interpreted as an evidence of quantum vortices.

4.1.4. Incompressible energy spectrum
Spectra of the compressible and the incompressible kinetic en-

ergies at late time (t = tb) are presented in Fig. 11. The compress-
ible part is dominant and has the same features as the ones already
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Fig. 9. Snapshots of the iso-surfaces of lowdensity regionwith thresholdρthr = 0.1
(the mean density is ⟨ρ⟩ ≃ 0.43). The box is 1/2 × 1/2 × 1/4 the computational
domain. The frames are taken approximately every 3τ .

Fig. 10. Probability density function of the single velocity components at the
final stage in RUN 1. Inset: zoom on the positive tail of the distribution in log–log
coordinates.

Fig. 11. Compressible and incompressible kinetic energy spectra measured at final
stage of simulation in RUN 1. A k−5/3 showing classical Kolmogorov prediction is
also plotted.

discussed for the wave-action spectrum: it shows the peaks (har-
monics of the forcing scale) and it follows the Zakharov–Sagdeev
spectrum (with exponent −3/2 + 2 = 1/2). The incompressible
spectrum formally coincides with the classical Kolmogorov 5/3-
law. But we have seen in Fig. 9 that only one quantized vortex ring
remains in the system at this time, so it is impossible for the Kol-
mogorov theory, developed for the continuous classical vorticity
fields, to be relevant in this case. Resolution to this paradox is sug-
gested in [50]. In short, the −5/3 slope is produced by an energy
cascade carried by Kelvin waves (seen in Fig. 9). It turns out [27]
that the Kelvinwave energy spectrum also has exponent−5/3 and
the coincidencewith theKolmogorov exponent is purely fortuitous
(the Kelvin wave and the Kolmogorov spectra have different pre-
factors).
Fig. 12. Evolution of the linear Elin(t) and nonlinear Enl(t) energy densities in the
presence of large-scale friction (RUN 2).

Fig. 13. Wave-action spectrum n1D(k, t) at final stage of simulation in the presence
of friction. TheWWT 4-wave prediction k−1 is plotted with a straight line. The inset
shows the condensate evolution c0(t).

4.2. RUN 2—friction at large scales

In the previous run no steady turbulent state has been reached
because of the presence of the inverse cascade. To stay in the 4-
waveweak turbulence regime and to avoid the condensate growth,
an effective friction term at large scales is now considered. This
term is written directly in Fourier space and results in

D̂l = iµθ(k⋆ − |k|)ψ̃, (27)
where θ is the Heaviside step function, k⋆ = 91k is the lowest
forced wave-number and µ = 1 × 10−4 is a friction coefficient.
This coefficient is optimally chosen to stop the inverse cascade
without altering the direct energy cascade. With this choice both
the nonlinear and the linear energy densities reach a constant
value during the simulation, as plotted in Fig. 12. The final stage
wave-action spectrum, presented in Fig. 13, agrees with the k−1

4-wave WWT prediction. The condensate growth, shown in the
inset, is halted by the friction. Agreement with the 4-wave WWT
may seem surprising because, according to Fig. 12, the nonlinear
energy exceeds the linear one. However we believe that the
nonlinear energy mostly resides in the condensate and forcing
scales, whereas in the direct cascade range the modes are weakly
nonlinear.

We now turn our attention to the statistically steady state
distributions in the physical space. The PDF of the density field ρ,
not showedhere, looks similar to early stage distributionpresented
in Fig. 8. Here the average density is ⟨ρ⟩ ≃ 8.31 · 10−2, which
corresponds to healing length ξ ≃ 3.51x. The low density regions
in the computational box are plotted in Fig. 14. A big fuzzy ring
structure is present in the top of the figure. It is probably a single
vortex ring with large fluctuations, which create secondary small
vortex loops. Besides this ring, other uniform bubble-like low
density regions are present in the box. These are small scale ghost
vortices which are weakly nonlinear and short-lived (their typical
size is close to the resolution scale). Thus we see that even though
the wave field is mostly random, coherent vortex structures could
be present in this regime.
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Fig. 14. Low density region of the density field, threshold ρthr = 0.015, in presence
of friction (RUN 2).

Fig. 15. Probability density function of velocity components in the presence of
friction (RUN 2). Inset: zoom in log, log scale of the positive PDFs branch.

Fig. 16. Compressible and incompressible kinetic energy spectra in the final steady
state with friction (RUN 2).

The system in the fluid dynamics framework presents quite
unexpected results, still remaining to be explained. The PDFs of the
velocity components are plotted in Fig. 15. They are isotropic and
Gaussian in the core, but have power-law tails going like ∼ v−5.3

i .
We still do not have a theoretical explication for this exponent,
although the power-law PDF tail with a different exponent (−1)
was previously predicted for WWT in [31]. The compressible and
the incompressible kinetic energy spectra are presented in Fig. 16.
The compressible spectrum does not show peaks (as in RUN 1)
indicating that this turbulence is not acoustic. The incompressible
spectrum shows a power-law behaviorwith exponent close to 1/3.
Again, no theoretical explanation could be proposed.

4.3. RUN 3—hypo-viscosity dissipation

One can devise to stop the inverse cascade with a different
type of dissipation at low ks. For this reason we now choose a
Fig. 17. Wave-action spectra n1D(k, t) at the final stage of the simulation in the
presence of hypo-viscosity (RUN 3) for different forcing coefficients: f0 = 0.05 (A),
f0 = 0.1 (B), f0 = 0.5 (C), f0 = 1.0 (D), f0 = 2 (E), f0 = 3 (F). The k−1 WWT and k−2

CB predictions are also shown.

Fig. 18. Energy ratio η = Hnl/Hlin with respect to different forcing coefficients f0
in the presence of hypo-viscosity (RUN 3). For information about labels see caption
in Fig. 17.

hypo-viscosity of the form

Dl = i(∇−2)8ψ(x, t). (28)

As this operator is singular in k = 0, we will separately remove, at
each time step, the zero-mode in Fourier space. This choice still
allows to reach steady turbulent states, but unexpectedly leads
to different results with respect to RUN 2. In Fig. 17 we present
various steady state spectra evaluatedwith different amplitudes of
the forcing f0. What emerges clearly is that the spectra still have a
power-law behavior in the inertial range, but this does not follow
the WWT 4-wave prediction k−1. Instead, we see the k−2 critical
balance prediction for the wide range of the forcing amplitudes.

Our interpretation is the following. The hypo-viscosity causes
an infrared bottleneck that alters the dynamics at the scales near
the forcing: there the linear and the nonlinear energies become
comparable. At this point the Fjørtoft argument can no longer
apply and the critical balance condition propagates into all the
inertial range causing the observed k−2 spectra. This suggestion is
corroborated by the measurement of the ratio between nonlinear
and linear energies η = Hnl/Hlin evaluated for various forcing
coefficients f0 and illustrated in Fig. 18. From these results it is clear
that, for a wide range of the forcing coefficients (almost two orders
of magnitude), the energy ratio η remains always order one.

As in the previous runs, we look at the density field in the
physical space to visualize vortices and other turbulent structures.
We choose the particular case (D) when f0 = 1.0 (all other cases
look similar). Again, the PDF of the density is similar to the
early stage PDF in Fig. 8, and this is natural because there is no
condensate in the present system. Themean density is ⟨ρ⟩ ≃ 4.31·

10−1 and so ξ ≃ 1.51x. In Fig. 19 we show the low density regions
in the physical space with a threshold ρthr = 0.05. This figure is
qualitatively different from the previous ones (Figs. 9 and 14). Now
very thin vortex structures fill completely the computational box
and form a ‘‘vortex tangle’’.
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Fig. 19. Low density regions with threshold of ρthr = 0.05 are plotted at the final
stage with the presence of hypo-viscosity having forcing amplitude f0 = 1.0 (RUN
3).

Fig. 20. PDF of single velocity components in the presence of hypo-viscosity
with f0 = 1.0 (RUN 3). Inset: zoom of the positive branch of the PDF in log–log
coordinates.

The one point PDFs of the single velocity components are
plotted in Fig. 20. The PDFs, which show isotropy, are strongly non-
Gaussian and a power-law behavior of v−3 is observed. This result
is interesting because similar behavior has already been observed
experimentally in [49] and numerically in [29], and been explained
by presence of thin quantized vortex lines. We emphasize the v−3

PDF behavior is dominant and not present just in the tail as in the
RUN 1. This is because we have much more strong vortex lines in
the RUN 3. Indeed, as the condensate fraction is removed by this
type of dissipation, it is natural to think that the vortices fill the
system at all scales and highly influence the velocity field. These
vortex lines undergo frequent reconnections resulting in a sound
emission. The incompressible kinetic energy spectra, for all the
forcing amplitudes, are illustrated in Fig. 21. No evidence of −5/3
law is found in this (critical balanced) regime. All spectra have a
power-law behavior in the inertial range with exponent near −1.
A theoretical explanation of this exponent is still lacking.

5. Conclusions

In this paper we have analyzed the turbulent states in
the forced–dissipated 3D GPE model by using direct numerical
simulations. Introduction of the forcing and the damping is aimed
at achieving statistically stationary turbulent cascades. We have
focused our attention on the direct energy cascade by introducing
a pumping term at relatively large scales and by using hyper-
viscosity at small scales. We have studied three regimes with
different dampings at the scales larger than the forcing one:
no dissipation (RUN 1), a friction (RUN 2) and a hypo-viscosity
(RUN 3).
Fig. 21. Incompressible kinetic energy spectra for different forcing amplitude f0 in
presence of hypo-viscosity (RUN 3). For information about the labels see caption in
Fig. 17.

RUN 1 has been performed without any dissipation at large
scales and so the inverse cascade, predicted by the WWT theory,
causes condensation at the k = 0 mode. This alters the 4-wave
dynamics and the system, after a strongly turbulent transient,
becomes dominated by weak 3-wave dynamics of acoustic
fluctuations on background of a coherent condensate. The long-
time evolution in this case is characterized by the appearance of
a large quantum vortex ring in the numerical box. Kelvin waves
propagate on this vortex ring, which causes the incompressible
kinetic energy spectrum to follow the−5/3 law.We argue that the
classical turbulence picture developed for the continuous vorticity
fields is inapplicable here. The fact that the Kelvinwave turbulence
has the same spectrum as the classical Kolmogorov spectrum
is coincidental, as it arises from completely different physical
processes [27,50]. The vortex ring in this regime coexists with the
random acoustic waves engaged in the 3-wave interactions. The
vortex causes a v−3 tail on the velocity PDFs while the random
waves make there up a Gaussian core.

In RUN 2 and RUN 3 we have introduced a dissipation term
at large scales in order to stop the inverse cascade and to reach
steady states. The characteristics of these states depend strongly
on the choice of the low-k damping. If a friction is introduced
(RUN 2), the growth of the condensate is halted and the wave-
action spectrum follows the 4-waveWWTprediction. A large fuzzy
vortex ring surrounded by small ghost vortices appears at the final
stage of the simulation. If the dissipation is an hypo-viscosity (RUN
3), the final steady spectra, evaluated for a wide range of forcing
coefficient, agreewith the critical balance prediction. In this regime
the computational box appears to be filled by a vortex tangle, a
chaotic set of strongly nonlinear vortex lines. The velocity PDFs
exhibit, both in the core and on the tails, a power-law behavior v−3

characteristic of such vortex lines.
In summary, our numerical results clearly show that the

turbulent state in the direct cascade range is strongly affected by
the choice of damping at large scales. Most realistic configuration
for the existing BEC experiments is the case of RUN 1. Indeed, while
the hyper-viscosity can be physically understood as an evaporative
cooling mechanism, no large-scale damping mechanisms have
ever been proposed. On the other hand, to study the non-trivial
QT states predicted by the RUN 2 and the RUN 3, it would be
interesting to explore possibilities to damp the lowest-momentum
modes in BEC experiments.
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Fig. A.22. Qualitative direction behaviors of energy and particles fluxes with
respect to the power-law exponent α of KZ solution n(k) = ckα .

Appendix A. Signs of the fluxes

The KZ solutions carry constant fluxes of the conserved
quantities through scales. The GPE model has two conserved
quantities: the mass (particles) and the energy. We find here the
direction of the fluxes corresponding to the KZ solutions in a very
simple way, avoiding computing the flux signs from the kinetic
equation, as it was done in [51,34].

Consider Fig. A.22 where we qualitatively plot the flux
on a generic power-law spectrum n(k) = ck−α (which is note
necessarily a steady solution of the kinetic equation) as a function
of the exponent α. For very sharp spectra, α ≫ 1, both fluxes must
be positive. Indeed, we can think of a narrow-band spectrum:
this must spread which corresponds to the positive fluxes on
the negative slope side. As the fluxes are continuous functions of
α, we can determine their directions based on the zero-crossing
points, i.e. the RJ and the KZ exponents. Of course, at the two
thermodynamic RJ solutions, corresponding to α = 0 and α = 1,
both fluxesmust be zero. At the KZ solutions, only one of the fluxes
turns into zero. Namely, on the energy cascade KZ, the mass flux is
null and vice versa. Thus, the functions

η(α), particle flux direction
ϵ(α), energy flux direction

(A.1)

qualitatively behave as shown in Fig. A.22. It is then clear that the
energy undergoes a direct cascade (α = 3) while the mass cascade
inversely (α = 7/3).

Appendix B. Locality of interactions

We test the locality of interactions for the constant flux states.
This imply checking that the collision integral in the kinetic
equation (13) converges on the assumption of the KZ spectra
n(k) = ck−α . As these solutions are scale-invariant, the integral
is easily written in the ω space as

I(ω1) =
c3

8ω
α
2
1

∫
(ω2ω3ω4)

−α+d−1
2


ω
α
2
1 + ω

α
2
2 − ω

α
2
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α
2
4


× δ(ω1 + ω2 − ω3 − ω4)f (ω1, ω2, ω3, ω4) dω234, (B.1)

where

f (ω1, ω2, ω3, ω4) =
min
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ω2,
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1
2

(B.2)

takes into account the 3D average of δ(k1 +k2 −k3 −k4) over the
solid anglesΩ1,Ω2,Ω3 andΩ4, see [3,34,52,53] for details. In this
coordinate system the δ-function over frequencies can be easily
used, for example as ω2 = ω3 + ω4 − ω1. The integral presents
singularities for integration over ω3 at zero and infinity. Note that
is the same for ω4 integration as the integral is symmetric with
respect to (3, 4) ↔ (4, 3). By Taylor-expanding the integrand up
to the leading order, one gets

lim
ω3→∞

I(ω1) ∼

∫
ω

−
α+2
2

3 dω3

lim
ω3→ 0

I(ω1) ∼

∫
ω

−
α−1
2

3 dω3.

(B.3)

The locality holds for 0 < α < 3 which is true for the inverse par-
ticles cascade (α = 7/3) but not for the direct energy cascade (α =

3). Nevertheless the divergence in the latter case is marginal and
the solution can be corrected by a logarithmic factor [34].

Appendix C. The Fjørtoft argument

We present here a new version of the argument Fjørtoft
argumentwhich is formulated for conservative systems (no forcing
or dissipation). We introduce the mass and the energy centroids
as

KM =


kn(k)dk
M

KE =


kE(k)dk

E
=


k3n(k)dk

E
.

(C.1)

In the latter expression we have assumed (this is essential for the
Fjørtoft argument) that the nonlinear energy is negligible with
respect to linear one. In the followingwe use the Cauchy–Schwartz
inequality∫

f (k)g(k) dk ≤

∫
f 2(k) dk

1/2 ∫
g2(k) dk

1/2

. (C.2)

By splitting the energy integrand in two parts we get

E =

∫
k2n(k) dk =

∫
(k1/2n1/2)× (k3/2n1/2) dk

≤

∫
kn(k) dk

1/2 ∫
k3n(k) dk

1/2

=


KMMKEE (C.3)

and so we have

KMKE ≥
E
M
. (C.4)

This inequality means that if the particle centroid moves to low
wave numbers (inverse cascade) the energy centroid must move
to high wave numbers (direct cascade).

We now evaluate

KMM =

∫
kn(k) dk =

∫
(kn1/2)× (n1/2) dk

≤

∫
k2n(k) dk

1/2 ∫
n(k) dk

1/2

=
√
ME, (C.5)

which gives

KM ≤

E/M. (C.6)

This inequalitymeans that themass centroid can either staywhere
it is initially, or move to the large scales (inverse cascade), but it
cannot cascade to the small scales.

Combining the inequalities (C.4) and (C.6), we get

KE ≥

E/M. (C.7)

So the energy centroid can either stay where it was initially, or
move to the smaller scales (direct cascade), but it cannot cascade
to the larger scales.
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