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Equilibrium and nonequilibrium description of negative temperature states
in a one-dimensional lattice using a wave kinetic approach
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We predict negative temperature states in the discrete nonlinear Schödinger (DNLS) equation as exact
solutions of the associated wave kinetic equation. Within the wave kinetic approach, we define an entropy that
results monotonic in time and reaches a stationary state, that is consistent with classical equilibrium statistical
mechanics. We also perform a detailed analysis of the fluctuations of the actions at fixed wave numbers around
their mean values. We give evidence that such fluctuations relax to their equilibrium behavior on a shorter
timescale than the one needed for the spectrum to reach the equilibrium state. Numerical simulations of the
DNLS equation are shown to be in agreement with our theoretical results. The key ingredient for observing
negative temperatures in lattices characterized by two invariants is the boundedness of the dispersion relation.
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I. INTRODUCTION

Negative temperatures have been the subject of intensive
studies since they were conceived in the study of point vortices
[1] and the subsequent experimental work in Ref. [2], where
negative temperatures in nuclear spin systems were observed.
More recently, negative temperatures were also observed in
ultracold quantum systems [3]; moreover, the predictions of
Onsager on point vortices have been verified experimentally
[4,5]. In thermodynamics the requirement for observing neg-
ative temperatures is that the entropy S does not increase
monotonically with energy. Indeed, if the entropy is a con-
tinuous function of the energy, E , reaching a maximum away
from its domain boundary, then negative temperatures are
expected. This descends from the thermodynamic definition
of temperature, T = (∂S/∂E )−1. As expressed in Ref. [6],
“the assumption of monotonic increase of the entropy with the
energy is not essential to the development of thermodynam-
ics.” Despite controversies and criticisms to the existence of
negative temperatures related to the definition of the entropy
[7,8], negative temperatures are now well accepted by a vast
community and the observations in experiments appear to be
reliable [9–14].

Here we present an approach to the theory of negative tem-
peratures in weakly anharmonic lattices based on the so-called
wave kinetic (WK) equation [15,16], i.e., an equation that, in
analogy with the Boltzmann equation for particles, describes
the mesoscale dynamics of a system of interacting waves.
The WK equation can be derived in a systematic way from
deterministic (microscopic) weakly nonlinear and dispersive
wave systems [15–17]. It has been applied to a variety of fields
such as nonlinear optics [18], surface gravity waves [19,20],
Bose-Einstein condensation [21,22], gravitational waves [23],
and vibrations in anharmonic lattices [24,25]. In this paper,

we will consider the discrete nonlinear Schrödinger (DNLS)
equation as the starting point and build its thermodynamic
properties in the limit of small nonlinearity, passing through a
mesoscopic description via the WK equation.

The DNLS equation, [26], as its continuous version, is a
universal model; it describes the propagation of optical waves
in a waveguide array or a Bose-Einstein condensate in a peri-
odic optical lattice. Differently from other discrete systems,
like the Fermi-Pasta-Ulam-Tsingou lattice [27], the DNLS
equation has two conserved quantities, i.e., the Hamiltonian
and the total number of particles (two conservation laws are a
fundamental ingredient for observing negative temperatures).
A number of previous studies [28–34] have discussed the
statistical mechanics of the DNLS equation. The main idea
in Ref. [28] is that the negative temperatures in DNLS are
associated with the emergence of high-amplitude localized
structures or discrete breathers [35] in the strongly nonlin-
ear regime. Developments using the microcanonical ensemble
can be found in Ref. [36]. In the field of nonlinear optics
some interesting work has been done at equilibrium for a finite
number of modes, see Refs. [37–40]. Our approach, being
based on a theory that makes use of the random-phase approx-
imation for both positive and negative temperatures, cannot be
applied in the presence of coherent structures such as solitons
or breathers. Negative temperatures will reveal themselves as
localized Fourier energy spectrum in the high-wave-number
region.

II. THE WAVE KINETIC THEORY FOR
THE DNLS EQUATION

The DNLS equation reads

iψ̇m + (ψm+1 + ψm−1 − 2ψm) + ν|ψm|2ψm = 0, (1)
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where ψn is the complex amplitude of the oscillator at site m,
with m = 1, 2, . . . , M, and ν is an anharmonic parameter that
weighs the nonlinearity of the system. The DNLS equation
has two conserved quantities:

H =
M∑

m=1

(
|ψm+1 − ψm|2 − 1

2
ν|ψm|4

)
,

N =
M∑

m=1

|ψm|2 , (2)

which are the Hamiltonian and the total conserved norm of the
DNLS equation, respectively.

In our work we will use periodic boundary conditions
and, using the following convention for the discrete Fourier
transforms,

ψm =
M∑

k=1

ψ̂kei2πkm/M , ψ̂k = 1

M

M∑
n=1

ψme−i2πkm/M , (3)

we write the equation in Fourier space as

i ˙̂ψk1 = ωk1ψ̂k1 − ν
∑

k2,k3,k4

ψ̂∗
k2
ψ̂k3ψ̂k4δ

34
12, (4)

where ωk = 4 sin2(πk/M ) and δ34
12 = δk1+k2,k3+k4 is the Kro-

necker δ that accounts for Umklap processes, i.e., k1 + k2 =
k3 + k4, mod M. The Hamiltonian in Fourier space takes the
following form:

H

M
=

∑
k1

ωk1 |ψ̂k1 |2 − 1

2
ν

∑
k1k2,k3,k4

ψ̂∗
k1
ψ̂∗

k2
ψ̂k3ψ̂k4δ

34
12 . (5)

By using the following transformation ψ̂k =√
Ik exp(−iθk ), the equation can be written in angle-action

variables:

dIk1

dt
= −2ν

∑ √
Ik1 Ik2 Ik3 Ik4 sin

(
	θ34

12

)
δ34

12 ,

dθk1

dt
= ωk1 − ν

∑ √
Ik2 Ik3 Ik4

Ik1

cos
(
	θ34

12

)
δ34

12 , (6)

with 	θ34
12 := θk1 + θk2 − θk3 − θk4 . Assuming that ν � 1, we

expand the action-angle variables in powers of ν; we then
assume that the initial angles (or phases) are independent
random variables uniformly distributed in the [0, 2π ) interval.
A key step consists in taking the large box limit, which implies
taking M → ∞, thus making the Fourier modes dense in
the interval [0, 2π ). The wave kinetic equation (Boltzmann
equation for phonons) can then be obtained (see Ref. [17] for
details on the derivation):

dnk1

dτ
= ξk1 − γk1 nk1

(7)

with

ξk1 = 4πν2
∫ 2π

0
nk2 nk3 nk4δ

(
	ω34

12

)
δ34

12dk234

γk1 = −4πν2
∫ 2π

0
(nk3 nk4 − nk2 nk3 − nk2 nk4 )δ

(
	ω34

12

)
δ34

12dk234,

(8)

where 	ω34
12 = ωk1 + ωk2 − ωk3 − ωk4 , k is a continuous

variable in the [0, 2π ] interval, dk234 = dk2dk3dk4, ωk =
4 sin(k/2)2, nk = n(k, t ) = 〈Ik〉M/2π is the wave action spec-
tral density, and 〈 · 〉 is performed over the initial random
phases and independent actions. Strictly speaking, the WK
equation is valid under the assumption that random phases
and amplitudes persist over time [41]. Besides the evolution
equation for the spectral density function, using the same
approximations and tools, it is also possible to derive an evo-
lution equation for the second moment, 
k = 〈I2

k 〉(M/2π )2,
which reads:

d
k1

dτ
= 4nk1ξk1 − 2γk1
k1 . (9)

Such an equation, see Refs. [15,42], describes the fluctuations
of the wave action density at fixed wave number. The solu-
tion of the Cauchy problem for the coupled system (7)–(9)
requires numerical computations; however, some interesting
physical insights can be achieved by making the following
analysis.

The WK equation for phonons has two invariants:

E =
∫ 2π

0
ω(k)n(k, t )dk, N =

∫ 2π

0
n(k, t )dk, (10)

which are named energy and number of particles or wave
action (strictly speaking, energy and number densities). Here
we point out that the conserved quantities of the WK equation
have a counterpart in the DNLS equation; however, there is a
major difference: While the number of particles is conserved
in both models, the energy conserved by the WK equation cor-
responds to the harmonic part of the Hamiltonian, see Eq. (5),
appropriately averaged. By defining the entropy density (see
Refs. [16,43]), as:

S(t ) =
∫ 2π

0
ln n(k, t )dk, (11)

an H theorem, dS/dt � 0, holds. When, and only when
dS/dt = 0, the Rayleigh-Jeans (RJ) distribution is obtained:

n(k)(RJ) = T

ω(k) − μ
= 1

βω(k) − γ
. (12)

Here T and μ are usually named temperature and chemical
potential (β = 1/T and γ = μ/T ). This result is consistent
with classical equilibrium statistical mechanics [see Ref. [10],
Eq. (58) therein]. Because n(k) is positive for all k, at
equilibrium one of the following conditions holds:

β > 0 and γ < 0, or

β < 0 and γ < 4β.
(13)

As noted in Ref. [10], the last condition implies the existence
of negative temperatures. In Fig. 1 we show the spectral
energy density, e(k) = ω(k)n(k), as a function of k for
different temperatures and chemical potentials. The classical
equipartition of energy, typical of systems that conserve only
energy, is obtained by setting μ = 0. In Fig. 1, a stationary
state with T < 0 and μ > 0 is also displayed. All of the states
represented in Fig. 1 are stationary states of the WK equation.
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FIG. 1. Spectral energy density e(k) = ω(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to T = 1 and
μ = 0; the green line corresponds to T = 1 and μ = −0.1 and the
black line (sharply peaked around k = π ) corresponds to negative
temperatures, i.e., T = −0.5 and μ = 5. All these curves are exact
stationary solutions of the WK equation.

Negative temperatures are characterized by a peaked dis-
tribution around k = π .

Besides mean values, the wave kinetic approach offers the
possibility to investigate the fluctuations and their relaxation
timescale. It can be checked by substitution that a nonsta-
tionary solution of Eq. (9) is 
k (t ) = 2n2

k (t ), provided nk (t )
evolves according to (7). The understanding of the timescale
by which such a solution is approached is extremely interest-
ing. Because of their similar mathematical structures, one may
expect that Eqs. (7) and (9) evolve on the same timescale. As a
matter of fact, it will be shown in the numerical computations
that 
k (t ) approaches 2n2

k (t ) on a much faster timescale than
the one pertaining to the evolution of nk . Indeed, assuming that

k (t ) is characterized by two timescales, the longer one being
the same as the one for nk (t ), it is straightforward to show
from Eq. (9) that 
k (t ) reaches 2nk (t )2 exponentially fast and
then it remains enslaved to it, as it tends to its asymptotic
value.

A. Equilibrium and thermodynamics

It is not obvious a priori to what extent the variables
used in the WK equation correspond to the ones appearing
in the first law of thermodynamics. Here we show that they
satisfy the equilibrium classical relation between T and S, i.e.,
T = (∂S/∂E )−1. Given the energy, E , the number of particles,
N , and S at equilibrium, i.e., for n(k, t ) = n(k)(RJ), we obtain
(similar integrals were calculated in Ref. [33] to study the
erosion of a discrete breather by a thermal bath):

E (γ , β ) = 2π

β

(
1 + γ√

γ (γ − 4β )

)
,

N (γ , β ) = 2π√
γ (γ − 4β )

, (14)

S(γ , β ) = 2π ln

[
2

2β − γ + √
γ (γ − 4β )

]
. (15)

FIG. 2. Energy, E , as a function of the number of particles, N .
The white region corresponds to nonaccessible energies, the light
blue to negative temperatures, and the red to positive temperatures.
The lines corresponding to 0+, 0−, and ±∞ temperatures are also
visible. T = 0− corresponds to E = 4N , T = ±∞ to E = 2N , and
T = 0+ to E = 0.

To express the entropy as a function of energy and number of
particles, S(E , N ), we invert the relations in (14):

β(E , N ) = 4π (E − 2N )

E (E − 4N )
, γ (E , N ) = 2πE

N (E − 4N )
. (16)

Knowing that γ = μ/T , the expression for the chemical po-
tential can be derived:

μ(E , N ) = E2

2(E − 2N )N
. (17)

A phase diagram with the energy as a function of number of
particles for fixed temperature can be easily built by solving
the first of Eqs. (16) for the energy to obtain:

E = 2N + 2πT − 2sgn[T ]
√

N2 + π2T 2. (18)

For T → 0+, we have E → 0; for T → 0−, we have E → 4N
from below; for T → ±∞, we get E → 2N .

Interestingly, since γ is always negative, there is an up-
per value for the energy for fixed number of particles, i.e.,
0 < E < 4N . Moreover, a positive β requires E < 2N . Then
negative values of β, i.e., negative temperatures, are possible
only for 2N < E < 4N . For positive temperatures, the chem-
ical potential is negative and becomes positive for negative
temperatures, with the constraint that μ > 4. These results are
shown in Fig. 2. Plugging Eqs. (16) into (15), we obtain:

S(E , N ) = 2π ln

[
E (4N − E )

8πN

]
, (19)

see also Ref. [30]. The entropy is defined for 0 < E < 4N ; it
is a continuous function of its arguments and it has an absolute
maximum at E = 2N . For fixed E and large N , there is a hor-
izontal asymptote at N = 2π ln[E/(2π )] which corresponds
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FIG. 3. The entropy, S, as a function of the energy, E , for N = 1.
The derivative of S is the inverse of the temperature. For E > 2N=2
the derivative is negative, implying a negative temperature. Note that
entropy is defined for 0 < E < 4N .

to γ = 0. In Fig. 3, we show the entropy as a function of the
energy E for N = 1.

The above description is consistent with the formalism of
classical thermodynamics; indeed, differentiating the entropy

dS(E , N ) =
(

∂S

∂E

)
N

dE +
(

∂S

∂N

)
E

dN (20)

and calculating the derivatives, it turns out that (∂S/∂E )N =
β and (∂S/∂N )E = −γ . This implies that the definition
of entropy and other variables in the WK equation at the
Rayleigh-Jeans equilibrium match the corresponding defini-
tions given in classical thermodynamics.

B. The Boltzmann entropy and its relation to the
nonequilibrium entropy defined in Eq. (11)

The Boltzmann entropy SB is proportional to the natural
logarithm of the number of possible microstates � of a system
at fixed energy and number of particles:

SB = ln �. (21)

The strategy to compute � is the following: We consider
�(N, H ) and take a two-dimensional Laplace transform to get
�(γ , β ):

�(γ , β ) =
∫ ∞

0
�(N, H )eγ N−βH dHdN. (22)

�(N, H ) can be calculated as

�(N, E ) =
∫ ∞

0
δ

(
N −

M∑
k=1

Ik

)
δ

(
E −

M∑
k=1

ωkIk

)
M∏

k=1

dIk,

(23)
where, consistently with our hypothesis related to the random
phases and the smallness of the nonlinearity, we have assumed
H 	 E , with E the harmonic energy density. We plug (23) into

(22) and use the property of the δ, so that

�(γ , β ) =
∫ ∞

0
eγ

∑M
k=1 Ik−β

∑M
k=1 ωk Ik

M∏
k=1

dIk, (24)

which can be rewritten as:

�(γ , β ) =
∫ ∞

0

M∏
k=1

eγ Ik−βωk Ik dIk . (25)

The dependence on Ik has been factorized and we can integrate
over Ik to get

�(γ , β ) =
M∏

k=1

1

−γ + βωk
. (26)

We then play the usual trick of taking the exponential of a log

�(γ , β ) = exp

[
ln

M∏
k=1

1

−γ + βωk

]

= exp

[
M∑

k=1

ln
1

−γ + βωk

]
. (27)

Now we take the large box limit M = 2π/	k → ∞ and using
the definition of the Boltzmann’s entropy SB = ln � we get:

SB(γ , β ) = ln �(γ , β ) = M

2π

∫ 2π

0
ln

[
1

−γ + βωk

]
dk.

(28)
This formula, apart from the factor M/2π , is our entropy, see
Eq. (11) where n(k) has been taken at equilibrium.

III. DIRECT NUMERICAL SIMULATIONS OF THE DNLS
EQUATION.

The fact that the WK equation predicts the existence of
negative temperatures does not necessarily imply that the
DNLS equation at small nonlinearity displays stationary so-
lutions with T < 0, as the WK equation is formally derived
only in the limit of random phases and random amplitudes.
A direct numerical simulation of the deterministic equation of
motion is needed in order to establish whether the stationary
solutions of Eqs. (7) and (9) are compatible with the micro-
scopic dynamics.

The DNLS equation has been solved numerically using a
standard fourth-order Runge-Kutta method; the simulations
performed preserved the Hamiltonian and the number of par-
ticles up to four significant digits. The initial conditions are
provided in Fourier space; the complex amplitudes in physical
space are recovered using the discrete Fourier transform

ψm =
M∑

k=1

√
nk	k e(i2πkm/M )eiφk , (29)

where 	k = 2π/M and φk are random phases distributed
uniformly in the [0, 2π ) interval. In order to observe nega-
tive temperature, we consider the following Gaussian-shaped
initial wave action spectral density function:

nk = B + A exp

{−[(k − k0)	k]2

(2σ 2)

}
(30)
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FIG. 4. Energy density as a function of wave number for a simu-
lation of the DNLS equation characterized by the initial condition
in (30) that corresponds to T = −0.74 and μ = 4.16. Note that,
because of the conservation of energy and number of particles,
temperature and chemical potential do not change in time [44,45].
The energy spectral density is the result of averaging over 1000
realizations characterized by different random phases. At the center
of the domain, from bottom to top, the curves refer to t = 0, t = 103,
t = 104, respectively, and the dark curve is the prediction from the
Rayleigh-Jeans distribution, Eq. (12). In the inset the entropy defined
in Eq. (11) as a function of time is displayed.

with σ = 0.9, A = 2, B = 0, 	k = 2π/M, M = 512, and
k0 = M/2. With this choice E = ∑

ωknk	k = 18.80 and
N = ∑

nk	k = 5.63; therefore 2N < E < 4N which cor-
responds to T = −0.74 and μ = 4.16, i.e., negative tem-
peratures. One thousand realizations of the same spectrum
(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
the ensemble. The nonlinear parameter ν was set to 0.03. In
Fig. 4 we report the spectral energy density at time t = 0,
t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
the curves are almost indistinguishable, i.e., the long time
behavior of e(k) matches the theoretical RJ predictions. The
simulation was carried out up to time t = 105 and no fur-
ther changes in the energy-density spectrum were observed
(similar results have been obtained in Ref. [29]). Moreover,
we show in the inset of the figure the monotonicity of the
entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
temperatures. Concerning the fluctuations described by the
second moment, we show in Fig. 5 the evolution in time of

k for k = π . The numerical results show that the prediction
of Eq. (9) is accurate: After a very quick relaxation to the
solution (shown in the inset), 
k follows the evolution 2n2

k .
The probability density function of Ik is also reported in Fig. 6
for different times. The prediction based on the wave kinetic
approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.
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FIG. 5. Evolution in time of the second moment 
(k = π, t ) in
light green. The solution of Eq. (9) 
(k = π, t ) = 2n(k = π, t )2 is
shown in red. In the inset a zoom of the the early stages of the
evolution are also reported.

IV. DISCUSSION AND CONCLUSIONS

The notion of negative temperatures is well established
through some experimental results and theoretical arguments
and it is well known that it is strictly connected with the
existence of an upper bound for the energy. In our work we
have studied negative temperatures in a lattice starting from a
microscopic dynamics. The family of stationary equilibrium
solutions of the WK equation associated with the lattice dy-
namics are characterized by two parameters which play the
role of temperature and chemical potential. For most of the
systems in this framework the temperature is positive and
the chemical potential is negative. However, if the dispersion
relation is bounded from above, as in the case of the DNLS
equation, then the distribution of particles in wave numbers
can be positive also for negative temperatures and positive
chemical potential. This simple observation has allowed us
to carry out the calculation and express analytically T and

10-4
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10-1

100

101

 0  2  4  6  8  10

P
(I

(k
=

))

I(k= )

t=1

t=2

t=50

FIG. 6. Probability density function of I (k = π ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].
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μ as functions of the energy and number of particles. Nu-
merical simulations of the lattice dynamics agree well with
the theory. Moreover, we have also studied the evolution of
the fluctuations around the mean values, i.e., the wave action
spectrum; in the framework of the wave kinetic approach it
is also possible to derive an equation for the second moment,

k (t ), of the probability density function of the action; it is
interesting to notice that the timescale needed for 
k (t ) to
approach its solution, 2n2

k (t ), is much faster than the time
needed for nk (t ) to reach the Rayleigh-Jeans distribution. The
probability density function of the action is shown to approach
the exponential distribution on the fast timescale.

Our analytical result is valid only in the limit of weak non-
linearity, where the unperturbed energy (the one associated
with the linear part of the equation of motion) is a quasi-
conserved quantity (besides the number of particles). In the
presence of a single conservation law, negative temperatures
are not predicted because the Rayleigh-Jeans distribution cor-
responds to the standard equipartition of energy (no chemical
potential is present) and temperature may not assume nega-
tive values. We also emphasize that our approach, compatible
with negative temperatures, is universal and can be applied
to many other dispersive wave systems characterized by res-

onant four-wave interactions, provided the dispersion relation
is limited from above, or the Fourier domain is truncated as in
the case of inviscid two-dimensional turbulence, described in
Ref. [47,48]. Indeed, recently, relaxation to a RJ distribution in
a multimode optical fiber has been observed [49]; such system
is a good candidate for observing experimentally negative
temperature.

Note added. Recently, S. Nazarenko mentioned to us that,
in collaboration with J. Skipp, they performed a very similar
calculation on a truncated Gross-Pitaevskii equation [48].
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