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Experimental evidence of the modulation of a plane wave
to oblique perturbations and generation of rogue waves
in finite water depth
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We present a laboratory experiment in a large directional wave basin to discuss the
instability of a plane wave to oblique side band perturbations in finite water depth.
Experimental observations, with the support of numerical simulations, confirm that
a carrier wave becomes modulationally unstable even for relative water depths k0h
< 1.36 (with k the wavenumber of the plane wave and h the water depth), when it is
perturbed by appropriate oblique disturbances. Results corroborate that the underlying
mechanism is still a plausible explanation for the generation of rogue waves in finite
water depth. C⃝ 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821810]

The generation of very large amplitude waves (also known as freak or rogue waves) has
received much attention during the past decades in many different fields of physics, including
hydrodynamics,1–4 nonlinear optics,5, 6 and plasma physics7 (see a general overview in Onorato
et al.8). One of the most accredited mechanisms responsible for the generation of deep water rogue
waves is the modulation of wave packets due to unstable perturbations.9–11 This is a generalisation
of the Benjamin–Feir or modulational instability,12 which leads to strong focussing of wave energy
through a quasi-resonant four-wave interaction process. At cubic order, the instability of deep water
waves is described by the nonlinear Schrödinger equation13 (NLS), which is derived from the Euler
equations by assuming that waves are weakly nonlinear (i.e., steepness ε = k0a0 ≪ 1, where k0

is the wavenumber of the carrier wave and a0 is its amplitude) and have narrow bandwidth ("k/k0

≪ 1, where "k is the modulation wavenumber). For collinear propagation (i.e., carrier wave and
disturbances have the same direction), a linear stability analysis of NLS indicates that unstable
disturbances can lead to an exponential growth of a small-amplitude modulation.14, 15 Interestingly
enough, laboratory experiments16, 17 and numerical simulations14, 18–20 suggest that a plane wave is
also unstable to oblique side bands (i.e., disturbances propagating at an angle with respect to the
carrier) if propagation in two horizontal dimensions is allowed. This is ensured by the fact that the
region of instability (as derived from a 2+1 NLS) is stretched over a narrow domain forming an angle
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of about 35.5◦ with the mean wave direction. In wavenumber space, this corresponds to "ky/"kx ≈
0.7, where "kx and "ky are the components of the oblique modulation wavenumber in the (kx, ky)
plane21 (see the nonlinear instability diagram in Fig. 16 of Kharif and Pelinovsky,10 for example).
Although the modulation is primarily dominated by collinear perturbations in infinite water depth
(k0h → ∞, where h is the water depth),22 the most unstable modes are normally oblique with respect
to the carrier wave in arbitrary water depths (k0h ≤ ε−1).18, 22 Direct numerical simulations of a 2+1
NLS equation,14, 20 in this regard, confirm that oblique disturbances are also capable of triggering an
exponential growth of a small-amplitude modulation and hence rogue waves.

It is worth noting that many observations of extreme waves in the ocean have been reported in
conditions of finite water depths (normally k0h < 2),23–26 including the famous Draupner wave.23, 24

For k0h ≈ O(1), the interaction with the sea floor generates a wave-induced current that subtracts
energy from nonlinear focussing and, as a consequence, attenuates the modulation of wave trains
to side band perturbations. It follows that the instability diagram shrinks with decreasing depth,
concentrating gradually over a very narrow region of constant "ky/"kx ≈ 0.7 for k0h ≥ 1.36 and
increasing to "ky/"kx ≈ 0.77 as k0h approaches the value of 1.10, 22 Under these circumstances, a
plane wave remains stable under the influence of a collinear perturbations for k0h ≤ 1.36, while it
can still destabilise under the effect of oblique unstable modes.20, 27–33 Apart from the generation of
crescent waves,31–33 numerical simulations based on the 2+1 NLS suggest that oblique side bands
can still lead to the formation of rogue waves also for k0h < 1.36 (see Slunyaev et al.20). Despite
its importance in many fields of physics and earth science, however, this result has not received a
proper experimental confirmation yet.

In the present letter, we discuss a set of laboratory experiments that were carried out to investigate
wave dynamics in finite water depth. The aim is to validate the conjecture that the modulation of
plane wave by oblique perturbations can lead to rogue waves also when k0h < 1.36. Experiments
were conducted in the directional ocean wave basin at MARINTEK (Norway), which is 70 m wide
and 50 m long. The facility is equipped with 144 individually controlled flaps for the generation
of directional wave components on the 70 m side and a unidirectional wavemaker on the 50 m one
(only the former was used for the present study); absorbing beaches are mounted on the opposite
side of each wavemaker. The water depth is uniform and controlled by a movable bottom, which
was set to a depth h = 0.78 m for this specific experiment. The surface elevation was monitored by
25 capacitance gauges distributed along the basin at a sampling frequency of 200 Hz; three 3-probe
arrays shaped as a triangle and one 6-probe array shaped as a pentagon with a probe in the middle
were also deployed to monitor directional properties (a schematic diagram of the experiment is
presented in Fig. 1). The instrumentation layout is similar to the one applied by Onorato et al.34

Initial conditions consisted in a sinusoidal (carrier) wave, which was seeded by 4 oblique side
bands. Different configurations of the carrier wave were selected with period T = 1 s, 1.35 s, 1.68 s,

FIG. 1. Schematic representation of the experimental set up (a) and initial condition imposed at the wavemaker (b).
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and 1.84 s, which defined relative water depths k0h = 3.15, 1.78, 1.24, and 1.09, respectively. For
brevity, here we will only present two cases: k0h = 1.78 and 1.24. The related wave amplitudes
were selected such that all tests ran with identical wave steepness k0a0 = 0.14. Perturbations were
accurately chosen within the unstable region of the instability diagram. Specifically, two upper and
two lower oblique disturbances with coordinates ["kx, "ky], ["kx, −"ky], [−"kx, −"ky], and
[−"kx, "ky] were applied (see right panel in Fig. 1). The modulational wavenumber components
along the mean wave direction (x) were selected by ensuring a number of 5 waves under the
modulation in the physical space and thus about 10 waves in the time domain. Components in the
transverse direction (y) were chosen such that |"ky/"kx| = 0.6 for k0h > 1.36 and |"ky/"kx| = 0.75
for k0h < 1.36. Tests were also repeated for collinear configurations (i.e., unidirectional propagation)
by imposing "ky = 0. Each perturbation was then given a rather large amplitude (ab) equivalent to
30% of the amplitude of the carrier wave. Note that this is related to the difficulties in replicating
wave instability in finite water depth due to the large space scales that are required to fully develop
the maximum wave amplification and the relatively short length of the facility. The selection of such
large amplitudes coincides with an advanced stage of the modulation process, which is expected
to have started under the effect of infinitesimal (small-amplitude) disturbances. The advantage of
this configuration is the reduction of the space scale that is necessary for reaching the maximum
amplification.

It is important to note that five-wave interaction (class II instability) may be triggered, owing
to the high steepness of the carrier wave.31–33 Nonetheless, here we focus on modulational-like
instability as a result of four-wave interaction that is expected to play a major role in the generation
of large waves. In order to provide a theoretical benchmark for the interpretation of the experimental
results in this regard, we replicated laboratory observations with direct numerical simulations of
the Euler equations, by applying the Higher Order Spectral Method (HOSM) proposed by West
et al.35 (details for the application of HOSM in finite water depth can be found, for example, in
Toffoli et al.36). The method uses a series expansion in the wave slope of the vertical velocity to
resolve the surface elevation and the velocity potential. Simulations have been performed with a
third order expansion so that only four-wave interaction effects were enabled.37 No dissipation term
was applied.

One of the drawbacks of the numerical method is that it replicates the temporal evolution of an
initial surface, while experiments describe the spacial evolution of an initial time series. To allow
a comparison, we make the assumption that time can be translated into space by means of the
group velocity. This approach has been successfully used to compare experimental data with HOSM
simulations in Toffoli et al.38 We stress, however, that the purpose of the numerical simulations
is to support the interpretation of the experiments rather than provide a data set for a quantitative
validation of the results.

The physical domain for the simulations was selected to cover a square footprint of 9 dominant
waves along the mean direction of propagation. A grid of 256 × 256 points was used to ensure a fine
computational mesh with 28 grid points per dominant wave. The time integration was performed
with a time step "t = T/200 s and covered a total time frame equivalent to 400 wave periods. The
initial input surface was selected to resemble the input experimental conditions at the initial stage
of the modulation process, i.e., a carrier wave perturbed by small-amplitude disturbances.

In spectral space, the four-wave interaction results in a nonlinear energy transfer from the carrier
wave to the unstable side bands, with the lower ones growing faster than the upper disturbances.39, 40

Due to the closeness of wave modes, reconstruction of the two dimensional spectrum at the probe
arrays did not provide a neat separation of the different directional components. A spectral analysis
was therefore restricted to the frequency wave spectra as calculated from an individual wave gauge
at different distances from the wavemaker (see Figs. 2 and 3 for k0h = 1.78 and 1.24, respectively).
Note, however, that this representation only shows a sum of the oblique disturbances at a given
frequency. For k0h = 1.78, as expected, we observed a rapid asymmetric growth of the side bands
both in one and two dimensional propagation. There is, nonetheless, a energy loss for higher
frequency components due to selective breaking towards the end of the basin, which is consistent
with previous observations in, e.g., Tulin and Waseda.40 For k0h < 1.36, energy transfer ceases under
the condition of unidirectional propagation, at least within the boundaries of the facility (see upper
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FIG. 2. Spectral evolution along the basin for relative water depth k0h = 1.78: test with collinear perturbations (upper
panels); test with oblique perturbations (lower panels).

panels in Fig. 3), in agreement with the suppression of modulational instability.27 A certain degree of
dissipation was, however, recorded along the basin as a result of bottom friction and depth-induced
breaking. By allowing propagation in two horizontal dimensions, on the other hand, the imposed
oblique perturbations trigger modulational instability and consequently a nonlinear energy transfer
between the carrier and the perturbations. Under these circumstances, an asymmetric growth of the
side bands was observed (see lower panel in Fig. 3). Although energy dissipation occurred due to
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FIG. 3. Spectral evolution along the basin for relative water depth k0h = 1.24: test with collinear perturbations (upper
panels); test with oblique perturbations (lower panels).
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FIG. 4. Spatial evolution of a wave packed perturbed by an oblique modulation: (a) kh = 1.78; (b) kh = 1.24.

bottom friction and breaking, the initial spectral configuration tends to be restored towards the end
of the basin. To some extent, the reported growth of oblique side bands is in agreement with previous
laboratory experiments in a long flume,16 where a uniform wave without seeding of unstable modes
was observed to transferred energy towards a lower oblique sideband.

In the physical space, wave instability results in a nonlinear energy focussing, which makes the
modulation more pronounced. This is highlighted in Fig. 4, where the evolution of a carrier wave
perturbed by oblique side bands (for both k0h = 1.78 and 1.24) is presented. As modulation instability
only relates to free wave components, bound waves were filtered out by removing frequencies lower
than 0.5 and larger than 1.5 times the peak frequency. The resulting time series indicate clearly the
enhancement of wave modulation and the consequent amplitude growth. This is more pronounced
for k0h = 1.78, where waves become particularly steep and eventually start breaking towards the
end of the basin.

In order to verify the conjecture that the observed wave amplification is the result of modulational
instability, experimental observations were compared against numerical simulations. The normalised
maximum wave amplitude at each probe is presented in Figs. 5 and 6 (for k0h = 1.78 and 1.24,
respectively) as a function of the normalised distance from the wavemaker. Bound waves were
removed from both experimental and numerical records. The amplitude of the carrier wave is here
used as normalising factor for the wave amplitude, while the wavelength λ is used for normalising
the distance from the wavemaker. Note that the condition x = 0 corresponds to the stage of wave
modulation that was imposed at the wavemaker. In this regard, it is important to remark that
numerical simulations start from a condition of small-amplitude modulation, while experiments
have been forced to begin at an advanced stage of instability to allow the underlying process to
develop within the boundaries of the facility. Thus, the negative abscissa covers the initial part of
the propagation, which is not accounted for in the experiments.

For k0h > 1.36, numerical simulations show, as expected, that modulational instability induces
a rapid and substantial growth of wave amplitude in both one and two dimensional propagation. It is
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FIG. 6. Spacial evolution of the maximum wave amplitude for relative water depth kh = 1.24.

worth mentioning that wave growth is slightly quicker in the collinear (unidirectional) configuration,
though. Experimental data are also in good qualitative agreement with model predictions. The latter,
nonetheless, seems to slightly underestimate the wave amplitude in the defocussing stage for collinear
modulations.

For k0h < 1.36, the modulation is suppressed for collinear perturbations and wave amplitude
does not change significantly throughout the basin. This is predicted numerically and confirmed
experimentally (see grey circles in Fig. 6). It is worth noting that the experimental set up assumes,
a priori, an advanced stage of modulation as initial condition. Hence, during the first wavelengths of
propagation, a defocussing takes place, reducing the extent of the modulation and wave amplitude. In
the presence of oblique perturbations, on the other hand, wave packets remain unstable. Numerical
simulations, in this respect, confirm that this instability still leads to the development of a robust
wave amplification. Remarkably, this numerical result is qualitatively consistent with experimental
observations (see black dashed line and squares in Fig. 6).

In conclusion, we have discussed a set of laboratory experiments in a large directional wave
basin to investigate the instability of a sinusoidal (carrier) wave to oblique perturbations in finite
water depth. Although modulational instability is suppressed for k0h < 1.36 when propagation is
restricted to one dimension, experiments show that perturbations propagating at an angle with the
carrier waves can still trigger wave modulation, resulting in an amplitude growth (up to twice the
amplitude of the carrier wave) also when k0h < 1.36. Experimental evidence was supported and
confirmed by direct numerical simulations of the Euler equations, which describes the evolution
of the experimental wave packets under the effect of a four-wave interaction process only. The
challenge now is to verify whether the instability to transverse perturbations can generate a notably
large number of extreme waves also in more realistic random sea states.
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