
FLYING IN A SUPERFLUID: STARTING 
FLOW PAST AN AIRFOIL

‣ Recap on classical theory of flight: 2D and 3D
‣ Moving obstacles in superfluids
‣ How an airfoil potential may affect the superfluid 

flow
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CLASSICAL THEORY OF FLIGHT

‣ Inviscid theory to predict lift in stationary flow
‣ Viscous effects to explain the generation of lift and drag 

effects
[D.J. Achenson, Elementary Fluid Dynamics, Oxford University Press, 1990]

By Wright brothers - Library of Congress, Public Domain [Wikipedia]



CLASSICAL THEORY OF FLIGHT

‣ The due to the positive angle of attack (or geometry) the fluid’s 
speed is higher in the upper part of the airfoil (wing cross-section)

‣ The lift is a direct consequence of Bernoulli equation

[M. Van Dyke, An Album of fluid Motion, 1982]

1
2 |v |2 + p

ρ
= const.



2D INVISCID THEORY FOR AN AIRFOIL

The two-dimensional flow resulting from the incompressible Euler 
equation past an airfoil can be analytically solved using conformal mapping. 

→ Z(z) →
Z(z) = z + a2

z

dw
dz

= U∞ (1 −a2

z2 ) − iΓ
2πz

‣ Complex velocity potential, solution of the 
flow past a cylinder

‣ Joukowski map, example mapping a 
circle onto an airfoil

here λ = −0.1, a = 1

[M. Van Dyke, An Album of fluid Motion, 1982]



2D INVISCID THEORY FOR AN AIRFOIL

For a generic value of the terminal velocity, angle of attack, airfoil size 
and circulation around the airfoil, the streamlines in stationary 
conditions can be sketched as follows

‣ Two stagnation points (zero speed) at the airfoil, whose positions 
depend on the value of the circulation around the airfoil

‣ A divergence of the fluid’s speed at the trailing edge of the airfoil 
due to the presence of a cusp



THE KUTTA-JOUKOWSKI CONDITION

For a generic value of the terminal velocity, angle of attack, airfoil size 
and circulation around the airfoil, the streamlines in stationary 
conditions can be sketched as follows

The unphysical divergence of the fluid speed is cancelled by letting 
one of the two stagnation points meeting the trailing edge. This 
mathematically results in the Kutta—Joukowski (KJ) condition

ΓKJ = 4πU∞(a + λ) sin α



ADDING VISCOUS EFFECTS AND 3D CASE

Viscous effects:
‣ cause generation of the KJ circulation 

around the airfoil (forbidden in inviscid fluid 
due to Helmoltz’s third theorem)

‣ responsible for drag forces (form drag and 
skin drag)

‣ responsible for stall effect due to 
detachment of boundary layer

3D case:
‣ Vortex tubes created at the tips 

of the wings

Here not considered, only 2D!



FLYING IN A SUPERFLUID 

‣ Can an accelerated airfoil acquire circulation?
‣ If so, what are the admissible values of the lift 

for a given airfoil, angle of attack and terminal 
velocity? 

‣ Does the airfoil experience any drag?



THE GROSS-PITAEVSKII MODEL

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ −g |ψ |2 ψ −Vextψ = 0

‣ It is a mean-field equation that turns out to model incredibly well 
cold dilute Bose gases at very low temperature

‣ It also model qualitatively well superfluid liquid Helium
‣ In absence of the external potential, the ground-state is obtained 

for
‣ The healing length                            is the only inherent length 

scale of the system
‣ The large scale perturbation of the ground-state are phonon-like 

excitation of sound speed 

|ψGS| = ρ∞
ξ = ℏ2/(2mgρ0)

c = gρ0/m



THE GROSS-PITAEVSKII MODEL

Using Madelung transformation                          and defining density 
and velocity as                   and                     , respectively, then                   

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0

∂u
∂t

+ (u ⋅ ∇)u = ∇ −g
m

ρ + 1
m

V + ℏ2

2m2

∇2 ρ

ρ

ψ = ρ exp(ıϕ)
ρ = m |ψ |2 v = ℏ/m∇ϕ

‣ The GP models an inviscid, barotropic, and irrotational fluid
‣ Vortices are topological defect of the wave-function’s argument
‣ The last term of the second equation, the quantum pressure, 

becomes negligible at scales larger than the healing length  ξ

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ −g |ψ |2 ψ −Vextψ = 0



EXTERNAL POTENTIAL CYLINDER MOVING IN GP 

An external potential moving in a superfluid may cause the flow to 
break the Landau’s critical velocity (sound speed in GP), generate 
excitations (travelling waves, solitons, vortices) and cause dissipation

[Frisch et al., PRL 69, 1644 (1992)]

2d cylinder



EXTERNAL POTENTIAL MOVING IN GP 

An external potential moving in a superfluid may cause the flow to 
break the Landau’s critical velocity (sound speed in GP), generate 
excitations (travelling waves, solitons, vortices) and cause dissipation

[Winiecki & Adams, Europhys. Lett. 52, 257-263 (2000)]
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Fig. 2 – Sequence of surface contour plots of the fluid density for (a) F = 2 and (b) F = 4. The
motion is from left to right, and the real space deflection due to the attraction of the vortex core is
indicated by the transverse position. The momentum (or time) of each frame is indicated by a dot in
fig. 1(b) and (c), except for the last frame in (a), where P = 1562. Note that after detachment, (b),
the ring size remains constant and the object and ring move at different velocities.

When the vortex core begins to separate from the object boundary, the encircling ring
configuration, corresponding to the stationary solution (2), becomes unstable with respect to
transverse motion, and stochastic fluctuations induce a transition to a pinned ring solution
(3), where the object is bound within the vortex core as in frame 4 of fig. 2(a). In our
simulations, defining the external force, F , at a slight angle to the numerical grid axis is
sufficient to induce the transition. On moving into the core, the object acquires a transverse
velocity thereby deflecting its trajectory (fig. 2). The deflection angle is a few degrees, so this
effect could be observable. If the ring detaches, a second ring forms and the object is pulled
back in the opposite direction. Consequently, vortices are emitted on alternating sides of the
object, similar to the vortex shedding behaviour observed in classical fluids.

The jump into the core also leads to the excitation of oscillatory modes of the vortex
ring fig. 2(a). One mode of oscillation dominates [12] and the frequency is independent of
the applied force. As the fluid is compressible, an accelerating object creates sound waves
which damp the motion. This damping is apparent in the oscillations of the object velocity in
fig. 1(a) inset. If the applied force is maintained the vortex radius continues to increase and
eventually the motion becomes indistinguishable from that of a free vortex ring, indicated by
the dotted line in fig. 1(a).

From fig. 1(a), it follows that excluding the ring excitations, the motion closely follows
the time-independent solutions, therefore these solutions may be used to predict the motion
of more complicated objects. To test whether a spherical object favours the encircling vortex
ring configuration, we performed calculations on a sphere (R = 3.3) with a hemispherical
surface bump (R = 1.5). The largest effect occurs when the bump lies in the equatorial plane.
In this case, the critical velocity is reduced from 0.68 to 0.65, and the vortex ring emerges
asymmetrically with its axis pulled towards the bump. However, the initial ring radius is still
similar to the no bump case. Subsequently, the object or ring rotates such that the vortex
core is pinned to the bump.
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TABLE I. General characteristics of all runs. The horizon-
tal periodicity lengths are Lx!D ! 2.4

p
2 p and Ly!D !

1.2
p

2 p. The adimensional drag coefficient Cx is indicated
when vortex stretching takes place (NS: no stretching), except
for run 6 [see text below Eq. (7)].

Run M DM tendc!j j!D Lz!D Cx

1 0.30 7% 300
p

2 0.05 0.8
p

2 p 1.0

2 0.35 9% 250
p

2 0.05 2.4
p

2 p 0.5

3 0.22 9% 250
p

2 0.04 0.8
p

2 p 0.4

4 0.25 4% 625
p

2 0.04 0.8
p

2 p 0.9

5 0.25 12% 225
p

2 0.033 0.8
p

2 p 0.6

6 0.26 23% 300
p

2 0.025 0.4
p

2 p *

7 0.35 9% 50
p

2 0.1 0.8
p

2 p NS

8 0.30 7% 150
p

2 0.067 0.8
p

2 p NS

9 0.37 0% 75
p

2 0.067 0.8
p

2 p NS

10 0.25 4% 150
p

2 0.05 0.8
p

2 p NS

11 0.15 20% 150
p

2 0.033 0.8
p

2 p NS

the diameter of a stationary half ring should be bounded

by d"y ! 0.25# ! 18.8j and d"y ! 2 3 0.25# ! 6.3j.
The diameter d $ 9j measured on the half ring observed
in Fig. 2d is thus consistent with its quasistationary

behavior. The diameter of the half ring shown below

in Fig. 3 (inset), d $ 7.6j, is similarly found to be

FIG. 3. Top (a) and side (b) views of the stretched vortex
pinned to the cylinder at the end of run 2 (see Table I). The
inset shows the corresponding quasistationary half-ring solution

obtained at t ! 40
p

2 j!c.

between the corresponding bounds d"0.35# ! 11.4j and

d"2 3 0.35# ! 3j.
On a longer time scale, the quasistationary half ring can

evolve in two opposite ways: it starts moving either up-

stream or downstream. When the half ring is driven down-

stream, the vortex loop is continuously stretched while

the pinning points move towards the back of the cylin-

der. When the half ring moves upstream, it eventually

collapses against the cylinder, generating a laminar super-

flow. In order to distinguish between the two situations

we have carried out 3D runs summarized in Table I. Most

runs were performed at Mach numbersM slightly different

from that of the 2D stationary solutions M2D . The value

of DM ! "M 2 M2D#!M is indicated in the table. These

3D computations are rather expensive, e.g., to integrate the

NLSE up to the situation in Fig. 3b (run 2) necessitates a

resolution of 256 3 128 3 256 and 25 hours of CPU on
a Cray 90 machine.

Figure 3 shows the long-time dynamics for a stretch-

ing case: run 2 of Table I. The inset in Fig. 3b pictures

the corresponding quasistationary half ring for size com-

parison. Note that, as the vortex loop grows, its rear part

remains oblique to the flow (see Fig. 3a).

The runs of Table I are displayed schematically in

Fig. 4. The runs with vortex stretching are labeled by

circles and those without by 3. All runs were performed
at Mach numbers below Mc

2D"j!D#, indicated in Fig. 4 as
a solid line. The experimental [7] critical Mach number

and value of j!D are marked by an asterisk.

For 1!30 , j!D , 1!20, there is a frontier between
the dissipative and nondissipative cases that can be drawn

approximately as the dashed line in Fig. 4, which corre-

sponds to the expression Rs ! 5.5 with

Rs % j "UjD!cj ! MD!j . (6)
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FIG. 4. Parametric study of vortex stretching in a Mach num-
berM versus j!D log-log diagram. Circles: stretching; crosses:
no stretching (labels are run numbers of Table I). The asterisk
represents the experiment reported in [7]. The solid line is the
2D saddle-node bifurcation Mach number Mc

2D as a function of
j!D and the dashed line represents Eq. (6) (see text).
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[Nore et al., PRL 84, 2191 (2000)]

3d cylinder 3d sphere



EXTERNAL POTENTIAL MOVING IN GP 

Some dynamical effects are very similar to the classical viscous ones

[Stagg et al., PRL 118, 135301 (2017)][Sasaki et al., PRL 104, 150404 (2010)]

Von Karman vortex sheet Boundary layer

a pair created by the obstacle potential at a time have the
same circulation. Since two point vortices having the same
circulation h=m rotate around their center at an angular
frequency 2@=ðmd2Þ without changing their distance [4],
the created vortex pairs in Fig. 1(b) remain bound and
rotate. The pairs with opposite circulations are alternately
released from the obstacle potential to form a train of
vortex pairs, resembling a Bénard–von Kármán vortex
street [17]. In contrast to the vortex arrangement originally
considered by von Kármán, in which isolated point vorti-
ces are aligned, the vortex pairs constitute the vortex street
in the present case. The detailed dynamics of the vortex
street formation just behind the obstacle potential is shown
in Fig. 2. The pairs of vortices are released obliquely

backward left and right with alternate circulations. We
find from Figs. 1(b) and 2 that the distance between the
two vortex rows is b ’ 0:24! and the distance between
two pairs in a row is ‘ ’ 0:87! on average, and hence
b=‘ ’ 0:28, where ! ¼ @½103=ðmgn0Þ%1=2. This ratio is
in good agreement with the stability condition of
von Kármán’s vortex arrangement b=‘ ¼ "&1cosh&1

ffiffiffi
2

p
’

0:28 [4]. In fact, the vortex street in Fig. 1(b) survives at
least t > 103@=ðgn0Þ. The vortex street in Fig. 1(b) moves
in the &x direction at a velocity ’ 0:14ðgn0=mÞ1=2 ’
0:8h=ð

ffiffiffi
2

p
‘mÞ. The velocity of von Kármán’s point vorti-

ces, in which each vortex has a circulation 2h=m, is
h=ð

ffiffiffi
2

p
‘mÞ [4]. For large d and v, the periodicity in the

wake seems to disappear [Fig. 1(c)].
We systematically performed numerical simulations for

various values of d and v to determine the parameter
regions for the types of wakes in Fig. 1. Figure 3 shows a
rough sketch of each parameter region. The regions of the
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FIG. 2 (color). Serial snapshots of the density profiles for the
parameters in Fig. 1(b) in the frame moving with the potential.
The time interval is 10@=ðgn0Þ. The arrows indicate the direc-
tions of circulations. The field of view is 2!' !. The color scale
is the same as that in Fig. 1.
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(a) v = 2.4, d / ξ = 0.04~ (b) v = 2.6, d / ξ = 0.05~ (c) v = 3.0, d / ξ = 0.05~
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FIG. 1 (color). Density and phase distributions of a condensate past an obstacle potential. The velocity and potential width are
ð~v; d=!Þ ¼ ð2:4; 0:04Þ in (a), (2.6,0.05) in (b), and (3.0,0.05) in (c), where ~v ¼ v½103m=ðgn0Þ%1=2=ð2"Þ and ! ¼ @½103=ðmgn0Þ%1=2.
The white arrows in (a) indicate the directions in which the vortex-antivortex pairs move. The density is normalized byn0. The field of
view is 6!' 3!. In the numerical calculation, a 32!' 8! space is discretized into 4096' 1024.

0 0.05 0.1 0.15

no vortex

irregular

vortex pairs

Kármán

d/ ξ

v~

2

4

5

3

FIG. 3 (color). Dependence of the patterns of wakes on the
normalized Gaussian width d=! and velocity ~v of the potential.
The green, blue, and red regions correspond to the flow patterns
shown in Figs. 1(a)–1(c), respectively. The white region corre-
sponds to stationary laminar flow. The white arrow indicates the
change of ~v used in Fig. 4.
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parallel to the surface; the ejected rings also tend to lie more
in the xy plane (and travel vertically away from the layer).
We monitor the vortex line length below the tallest

mountain (z ≈ 100ξ), L0, and above it, L1 [Fig. 3 (inset)].
For v ¼ 0.6c, L0 increases with time and saturates.
Meanwhile, L1 rises slowly, as small rings are continually
shed by the turbulent layer into the bulk. Repeating for
slower (v ¼ 0.3c) and faster (v ¼ 0.9c) imposed flows
reveals the same qualitative behavior, but where the layer
forms at a slower and faster rate, respectively. The resulting
vortex line length distribution is shown in Fig. 3. The
vortices are predominately located near the surface of the
wire, with a faster imposed flow leading to denser turbulent
layers.
At early times, vortex lines which become aligned along

the flow direction may twist and generate further vortices.
Surface roughness favors this effect by providing pinning

sites for streamwise-aligned vortices which develop Kelvin
waves and reconnect, spooling new vorticity. An example of
this vortex-millmechanism [22] can be seen inFig. 2(c). This
confirms that the vortex tangle which develops can be
interpreted as generated either intrinsically, or extrinsically
by thevortex-millmechanism: in both cases vortices nucleate
at the tallest mountains before filling the layer below.
At later times (when the turbulent layer of vortices has

saturated) and/or for higher imposed flow velocities, the
critical velocity is exceeded across greater areas of the
surface. However, the highest mountains continue to domi-
nate vortex generation; here the fluid velocity is always the
highest and vortex shedding occurs at the fastest rate. To
maintain equilibrium, vortex line length is continuously
ejected from the top of the turbulent layer by vortex twisting
and reconnectionswhich create small vortex rings that detach
and travel upwards in the positive z direction. An example is
seen in Fig. 4, and highlights the role of reconnections (hence
of the quantum pressure) in creating new vortices.
To characterize the turbulent layer in a quantitative way,

we determine the average turbulent velocity hvi [43] as a
function of height z for the three imposed flow speeds
[Fig. 5]. In all cases, the turbulent layer consists of three
regions. In the top region, 100ξ≲ z≲ 200ξ, hvi is equal to
the velocity of the applied flow, showing that, above the

FIG. 3. Average vortex line length, L (bottom scale), as a
function of height, z (left scale), for v ¼ 0.3c (solid red line),
v ¼ 0.6c(dashed blue line), and v ¼ 0.9c(dot-dashed green line)
in the saturated regime. A 2D slice (y ¼ 0.1 μm) of the 3D
surface along x (top scale) is shown in grey to visualize the height
of the highest mountains. Inset: Vortex line length below (L0,
solid line) and above (L1, dashed line) the height of z ¼ 100ξ
(approximately the height of the highest mountain) for imposed
flow speeds v ¼ 0.3c (top), 0.6c (middle), and 0.9c (bottom).

FIG. 2. Vortex nucleation and formation of the turbulent
boundary layer for imposed flow v ¼ 0.6c. (a)–(c) Isosurface
density plots (0.25n0), showing the surface (yellow) and vortices
(red) in the vicinity of the two tallest mountains (view taken along
y for 15ξ ≤ x ≤ 125ξ) at times t ¼ 20, 30, 100τ. In (c) note three
vortex lines which are aligned along the imposed flow and
develop unstable Kelvin waves which will reconnect and create
new vortex loops. (d)–(e) Isosurfaces of the entire surface in the
saturated turbulent regime at late times (t ¼ 1220τ). Note the
turbulent layer up to approximately the height of the tallest
mountains and the region of small vortex rings above it.
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A TYPICAL SIMULATION

‣ The airfoil moves initially with constant acceleration until it 
reaches a terminal velocity 

‣ The airfoil’s length is                and angle of attack 
‣ Confining potential at the end of the computational box

Top: evolution of the 
phase field. 

Bottom: evolution of 
the superfluid density 
field.

U∞ = 0.29c
L = 325ξ α = π/12



EXPLORATION OF THE PARAMETERS SPACE

‣ We vary both the airfoil length and terminal velocity
‣ The airfoil shape (            ) and angle of attack                are constant 

Left: number of vortices produced at the trailing edge. Vortices produced at the top are 
highlighted with a polygon.  Right: two simulation examples, the latter with the 
detachment of the boundary layer causing a stall condition.

λ = 0.1 α = π/12

HOW TO PREDICT THE NUMBER OF VORTICES GENERATED?



ASSUME INVISCID INCOMPRESSIBLE THEORY

‣ Assuming steady flow
‣ Far from the healing layer 

around the airfoil assume 
incompressible inviscid 
theory (ideal theory) to 
hold

u 2
ideal = 1

4
L
r

U2
∞ sin2(α)(1 − Γ

ΓKJ )
2

+ O ( L
r )

The magnitude of the velocity field around the trailing edge, 
Taylor-expanded about the Kutta—Joukowski condition results in   



COMPRESSIBILITY CONDITION (NO QUANTUM PRESSURE)

‣ Assuming steady flow
‣ Far from the healing layer 

around the airfoil assume 
incompressible inviscid 
theory (ideal theory) to 
hold

3
2

u 2
ideal
c2 −1

2
U2

∞
c2 −1 > 0

The compressibility condition say that sound waves (and other 
excitations like vortices) occurs when the flow speed satisfies



IDEAL THEORY AND COMPRESSIBILITY CONDITION

By assuming that the healing layer thickness is                and 
combining the ideal theory predictions and the compressibility 
condition one finds that excitations are energetically favourable 
when

C ≤ 3
8

L
ξ ( U∞

c )
2

sin2(α)(1 − Γ
ΓKJ )

2

As in GP the circulation is quantised,                             ,             
we can define by analogy                                    

r = C ξ

Γ = nκ ,  with n∈ ℕ
ΓKJ = nKJκ ,  with nKJ ∈ ℝ

Δn2 = (nKJ −n)2 = CL/(3ξ)

Rearranging the relation 
above and using the KJ 
condition one finds



PREDICTION OF THE NUMBER OF VORTICES

Number of vortices generated depending on the speed and length 
parameters.  The curves indicate the phenomenological prediction. The 
white area indicate the stalling behaviour 



ABOUT LIFT AND DRAG

Lift and drag can be measured integrating the stress-energy tensor

Tjk = mρUjUk + 1
2 δjkgρ2 − ℏ2

4m
ρ∂j∂k ln ρ

around a closed path containing the airfoil 

Left: rescaled lift (dashed) and drag (solid) versus time computed for different contours 
around the airfoil. Right: video showing the sound emission during the vortex 
nucleation at the trailing edge.



ABOUT LIFT AND DRAG (SOUND REMOVED)

We can artificially remove the acoustic component in the velocity 
field by decomposing the velocity field into a compressible and 
incompressible component. The forces calculated with the 
acoustically-filtered velocity field and the density field prescribed by 
the Bernoulli equation become now

‣ Lift is quantised
‣ Drag becomes 

zero after the 
vortex nucleation

Left: rescaled lift (dashed) and drag (solid) versus time computed for 
different contours around the airfoil removing sound



CONCLUSIONS

‣ An airfoil moving in a superfluid can generate vortices at the trailing 
edge by breaking the Landau’s critical speed 

‣ To preserve the total circulation, the airfoil acquires a non-zero 
circulation 

‣ This process is unsteady and generates sound
‣ When sound is removed (or steady regime is achieved) the airfoil 

experiences a quantised lift and no drag)
‣ If the terminal velocity of the airfoil is too high then a detachment of 

the boundary layer occurs (stall) and the steady regime cannot be 
achieved



THANKS FOR YOUR ATTENTION!

Acknowledgments
DP was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) 
Research grant EP/P023770/1.

Joint work with: Seth Musser, D.P., Miguel Onorato, William T.M. Irvine

ARXIV:1904.04908


