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CLASSICAL THEORY OF FLIGHT (2D)
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» ldeal theory: stationary flow, prediction of lift

» Viscous effects: explain generation of lift and drag effects
[D.J. Achenson, Elementary Fluid Dynamics, Oxford University Press, 1990]



CLASSICAL THEORY OF FLIGHT (2D)

|deal theory (inviscid and incompressible): full family of stationary
flows depending on (a, U_,, L,I")

Z /b’hlé U\Otx’.bus
%‘\ N\

9_03

> Kutta—Joukowski (K]) condition

> lift per unit of wingspan of —pU_I ¢,



CLASSICAL THEORY OF FLIGHT (2D)

Viscous effects

» viscous boundary layer _Z-')
around the airfoil /

> viscosity allows the
generation of the K] %;
circulation around an @/ ol
accelerated airfoil

» drag forces arise (form drag and skin drag)



FLYING IN A SUPERFLUID

» Can an accelerated airfoil acquire circulation?

» |Is there a constrain similar to the Kutta—
Joukowski condition!?

» If so, does the airfoil experience any lift and/or
drag!



THE GROSS-PITAEVSKII MODEL
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> inviscid, compressible, and irrotational fluid
» vortices are topological defects of quantum of circulation x = h/m

> airfoil is modelled using a moving external potential V, , whose

intensity is much larger than the chemical potential y = gp,



A TYPICAL SIMULATION

» airfoil accelerates until -5006 06 500§ -500€ -400¢ -300€ -200¢
it reaches a terminal 200
velocity U_ = 0.29¢ 508
» the lengthis L =325 0
and angle of attack -50¢
o=rnll2 Sl
Top: evolution of the phase | /
field. Bottom: evolution of the o
superfluid density field. | |
Final stage:

» Emission of 4 quantised vortices at the trailing edge

» By conservation of total circulation, the circulation around the
airfoil becomes I' = 4«
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EXPLORATION OF THE PARAMETERS SPACE

> We vary both the airfoil length and terminal velocity

> The airfoil shape and angle of attack o = 7/12 are kept constant
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Left: number of vortices produced at the trailing edge.Vortices produced at the
top are highlighted with a polygon. Right: two simulation examples, the latter with
the detachment of the boundary layer causing a stall condition.



VORTEX GENERATION BY COMPRESSIBLE EFFECTS

Introducing a dispersive boundary layer with thickness r = C¢
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ABOUT LIFT AND DRAG

Lift and drag is obtained from the stress-energy tensor
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Left: video showing the sound emission during the vortex nucleation at the trailing
edge. Right: rescaled lift (dashed) and drag (solid) versus time computed for
different contours around the airfoil.



ABOUT LIFT AND DRAG (SOUND FILTERED)

> filter the acoustic component in the velocity field
» use density field prescribed by the stationary Bernoulli equation
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Lift appears now quantised and drag becomes
nearly zero after the vortex nucleation



CONCLUSIONS

» An airfoil moving in a superfluid can generate vortices at the
trailing edge due to compressible effects

» The number of vortices produced can be explained using the
classical Kutta—]oukowski condition

» The (transient) nucleation process generates sound
» When sound is filtered (or let escape to infinity) the airfoil

experiences a quantised lift and no drag
arXiv:1904.04908



