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SOUND EMISSION AND IRREVERSIBLE
DYNAMICS DURING VORTEX
RECONNECTIONS IN QUANTUM FLUIDS

» Introduction on quantum fluids (superfluids)
» What are vortex reconnections?

» Evidence of irreversible dynamics

» Matching theory to explain this behaviour



WHAT IS A QUANTUM FLUID (SUPERFLUID)?

Mathematically (fluid mechanics)
> Total absence of viscosity
» Irrotational flow, but vortices exist as topological defects

» Vorticity is delta-supported and circulation is quantised (take only
multiple values of the quantum of circulation

Physically (quantum mechanics, statistical mechanics, condensed matter)

> Quantum fluids manifest at very low temperatures or at very high
density

» Superfluidity is related to Bose-Einstein condensation
» Emergence of an order parameter that describes the system



EXAMPLES OF QUANTUM FLUIDS

Bose-Einstein condensates
[top: JILA group, bottom: Ketterle et al.]
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VORTEX RECONNECTION IN CLASSICAL FLUIDS

Before the reconnection =0
» Two vortex tubes (intense
vorticity) approaching

each others
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After the reconnection

» Vortex tubes and other
vortex structures emerge
and separate

Instability and reconnection in
the head-on collision of two
vortex rings

T.T.Lim & T. B. Nickels

NATURE - VOL 357 - 21 MAY 1992



[Kleckner & Irvine, Nature 201 3]




VORTEX RECONNECTION CLASSICAL VS. QUANTUM FLUIDS
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Trefoil decaying in classical quantum fluids
Trefoil decaying in classical viscous fluids [Proment et al., PRE 2012]

[Kurstulovic, private communication]

» Complicate vortex » As the circulation takes only
structures are created quantised value, vortices
after the reconnection simply reconnect exchanging

their segments
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[Paoletti et al., PNAS 2008]

Vortex reconnections in superfluid liquid
helium (top) and BEC of cold gases (bottom)
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[Serafini et al., PRL 2015]



MATHEMATICAL MODELS: BIOT-SAVART (AND LIA)

The Biot-Savart (BS) model is formally derived by the
incompressible Euler’s equation with filamentary vorticity (in 2D is
the point vortex model)

[Saffman,Vortex Dynamics ; Pismen,Vortices in Nonlinear Fields]
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Local induction approximation (LIA)
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MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

Derived independently by Gross and Pitaevskii in the 1960s

0 h2 [Pitaevskii & Stringari, 2003]
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> This is nothing but the nonlinear Scrhoedinger equation (water waves, nonlinear
optics, cosmic strings)

» Integrable only in one spatial dimensions

» In more than one spatial dimensions, GP conserves particles (number of bosons),
inear momentum and energy, that is

L, in
N=||y|°dV, P=7 (l//Vl//*—l//*Vy/)dV and
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MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

Derived independently by Gross and Pitaevskii in the 1960s

0 h2 [Pitaevskii & Stringari, 2003]
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ot 2m

»  Uniform solution |y | = +/py/m

» The healing length & = \/hz/(ngpO) is the only inherent length scale of the

system

» Linearising over the uniform state, the large-scale speed of sound is ¢ = \/gpo/m2
> The GP equation can be recasted to
oy ¢
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MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

— -V +—|ylPy
o \/2¢ Po
Using Madelung transformation y = +/p/m exp[i¢/(\/§c§)] and
defining density and velocity as p and v = V ¢, respectively, then

P V. (v =0

_ . V) =

ot o

0 2 V2\/p
—V+(V V)V=—C—Vp+czc§2V VP
ot Po /P

» The GP models an inviscid, barotropic, and irrotational fluid

> The last term of the second equation, the quantum pressure,
becomes negligible at scales larger than the healing length &

[Nore et al., Phys. Fluids 1997]



THE GROSS-PITAEVSKII MODEL

0 C m
i = —EViy+— |y |’y
o \/2¢ Po

Using Madelung transformation y = y/p/m exp[igb/(ﬁcf)] and
defining density and velocity as p and v = V ¢, respectively, then

[Pitaevskii, JETP 1961]
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VORTEX RECONNECTIONS IN GP

| » Vortices naturally reconnect
A in GP
» Kelvin’s theorem does not
apply due to density

(b)

depletion at the vortex core

2 Y
(quantum pressure term)

» Numerically, it is quite easy to
A prescribe any filamentary
3 initial configuration in the GP
model

[Koplik & Levine, PRL 1993]



OUR NUMERICAL EXPERIMENTS IN GP

» decay of two linked rings
(Hopf link)

» vary the offset parameters
(d,, d,), spanning over 49
different configurations

» track accurately the positions
of the vortex filaments

[Villois et al., JPhysA 2016]

field p of an Hopf link realisation

Example of the evolution of the density




ABOUT RECONNECTION: LINEAR THEORY APPROXIMATION

[Nazarenko & West, |LTP 2003]

F)<E = i =

¢t =2arcot(A,), where A =AT/A" :,

[ViIIois et al., PRFluids 2017]

» same scaling § « ¢!/? before \ /

and after, only the pre-factors

0.5 ™
change A™ Ny ‘ > ¢+
» filaments reconnect tangent to
a plane and their projections

are branches of an hyperbola _ / \
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ASYMMETRY IN THE DISTRIBUTION OF THE RATES A+

- | | | |
0 0.5 1 1.5 2 2.5
Red points data of this work, other symbols are from [Villois et al., PRFluids 2018] and [Galantucci et al., PNAS 2019]

CLEAR EVIDENCE OF IRREVERSIBLE DYNAMICS, EVEN IF THE GP
MODEL IS TIME-REVERSIBLE. HOW TO EXPLAIN THIS ASYMMETRY?



OUR MATCHING THEORY

time

Biot-Savart model Schrodinger equation Biot-Savart model

» when 4(¢) < 9, linear theory (linear Schrodinger)

when o6(f) > 0;;, nonlinear theory using vortex filament model or
local induction approximation (LIA)

» matching of the two theories at 6(¢) = J;;,



ABOUT THE RECONNECTION: THE LINEAR THEORY
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A general second-order polynomial solution at the reconnection time 7. = 0

having two nodal-lines (vortices) is given by

[ -

D) ° —_— l

L - - - - J

p=%1,(A,B,C,D)€R, 73
0 € [0,7z], { > 0 is a generic length scale

> The vortices are identified as the
intersection of Re(y,) = 0 and Im(y,) =0 u

> Without any loss of generality, we set
@ = 0 as this is a quadratic form



ABOUT THE RECONNECTION: THE LINEAR THEORY

Once evolved in time, the wave-function reads
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ABOUT THE RECONNECTION: THE LINEAR THEORY

projections onto the y =0 plane
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{ All reconnection angles ¢ and concavity |
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OUR MATCHING THEORY

time
>
57 (t) > ¢ 5E(t) < € 5*(();5
R, \\/ R/,
............ P> LELEEEEY = TETERTTRTEEY =
input output/\
Biot-Savart model Schrodinger equation Biot-Savart model

» matching of the two theories at 6(¢) = §;;,
» in BS (and LIA) theory

momentum: P;‘i:EJ R* X dR*
2)g

| APy =PL - Py
— + 3 ;&
| AEjja = Efjy — Efia }.

energy: Ef, « J | dR™ |
A [Pismen, 1999]



OUR MATCHING THEORY

» A useful parametrisation for the filaments, in terms of ¢ and A, so that
they satisfy the shape found in the linear theory is

_ + _
R, 1) = {—% cot <¢2 > nh(?), 52@ cosh(?), z7(Z, t)}

_ + _
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» matching of the two theories at 6(¢) = J;;,,
» in BS (and LIA) theory

momentum: P;‘i:EJ R* X dR*
2)g

;: APy =P, — Py

7 N AE = E* —Eu |
: LIA — *~LIA LIA

energy: Ef, « J | dR™ |
A [Pismen, 1999]



THE BS (AND LIA) REGIME

As the filaments are branches

of hyperbola they are of @) ()

t <0 — t>0

infinite length.We compute
their integrals in a finite
cylinder parallel to the z-axis,

centred at the reconnection

point (the origin) and of
radius R > 0O,

The limits of integration, in the parametrisation of the filaments, are given by
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THE BS (AND LIA) REGIME

momentum: P§1=£J R* X dR*
2])g

energy: E]:—“IAocJ |dR™ |
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CONVERSION OF FILAMENT'S MOMENTUM INTO SOUND

Ppulse - = APﬁl X <09 0,

1+ A2

r

) — APWEW,Z > (0

Example of sound pulse emission propagating along the positive z-axis
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> propagation at almost speed of sound ¢

> some dispersive effects
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CONVERSION OF FILAMENT'S ENERGY INTO SOUND

E

pulse

=—AE\ = AZLIL,, Z,istheinitial length

| |Allowed values

® GP data
——AL/Lyat A=0 i
-- —AE/E() at A = 4050

ke Epulse/Etot X |% - ]-|0'71 -

0.5 1 1.5 2 2.5 3 3.9 4
A, JA

THIS EXPLAIN THE ASYMMETRY IN THE DISTRIBUTION OF A = AS
SOUND PULSES WITH NEGATIVE ENERGY ARE PHYSICALLY IMPOSSIBLE!



SUMMARY AND CONCLUSIONS

> We found that the
distribution of the rates of
approach A~ and separation
A" is asymmetric, evidence
of irreversible dynamics

> This is the manifestation of
an irreversible dynamics
explained by the emission
of a sound pulse

2.5

2,

1.5¢

<

1+

0.5"

0

> We performed a statistical study of vortex
reconnections in quantum fluids (GP model)

2.5



SUMMARY AND CONCLUSIONS

time
>
57 (t) > ¢ §E(t) < & 0T (t) > ¢
\\/ \/ > We proposed a matching between
R 0 N ! Rz, linear theory and BS (and LIA)
input output/\
Biot-Savart model Schrodinger equation Biot-Savart model a) 1005 :z i ;gg
1= | —z =93¢
0.995 :zfggg
> We found that the momentum of the € oo RS
< —2z = 30¢
sound pulse only propagates towards 0.985 1Y
o, o . —z = 33¢
the positive z-axis 0.98: e
. . (t—t)/7
4 B

We quantitative explained 004

the origin of the irreversible .
dynamics by showing that 002 N e g

001 *57 T Al -

the energy of the sound
pulse is only positive when

AT > A~ that is for
0 <ot <n/2

Epulse/Etot

-0.01
-0.02

| |Allowed values
® GP data
——-AL/Lyat A=0
-- —AL/Lyat A =+o0

=t Epulse/Etot X ‘% = 1‘0'71 —
I \

0.5 1 1.5

A, /A

3 3.5
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57 (t) > ¢ §E(t) < & 0T (t) > ¢
\\/ \/ Work on a “more precise”
Bt NEE ! Ria, asymptotic matching theory
input output

/\ 2) 1005 ‘ ‘ T
1 = BANN | |—z=22¢
Biot-Savart model Schrodinger equation Biot-Savart model —z =23
0.995 ¢ —2z = 25¢
- —2z = 26§
< 099 —*= ggg
Analyse the sound pulse, to know if itis  (gs iy,
o, » . . —2z = 33¢
a “superposition” of (quasi-)linear 0.98 e
. z = 36&
waves, or a full nonlinear structure 0.975, 2 40 o8

Look at the problem of reconnections in the Euler limit (regularity applied
maths problem) by letting different regularisation scales (viscosity in
classical fluid, dispersion in quantum fluids) tends to zero

Assume thermal or turbulent fluctuations to find how the distribution of
the rates A~ varies, for experimental applications in quantum fluids where
thermal excitations are always present (statistical mechanics problem)
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