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‣ Introduction on quantum fluids (superfluids)
‣ What are vortex reconnections?
‣ Evidence of irreversible dynamics 
‣ Matching theory to explain this behaviour



WHAT IS A QUANTUM FLUID (SUPERFLUID)?

Mathematically (fluid mechanics)
‣ Total absence of viscosity
‣ Irrotational flow, but vortices exist as topological defects
‣ Vorticity is delta-supported and circulation is quantised (take only 

multiple values of the quantum of circulation

Physically (quantum mechanics, statistical mechanics, condensed matter)
‣ Quantum fluids manifest at very low temperatures or at very high 

density
‣ Superfluidity is related to Bose-Einstein condensation
‣ Emergence of an order parameter that describes the system  



EXAMPLES OF QUANTUM FLUIDS

Superfluid liquid helium [Public Domain, Wikipedia]

Neutron stars [Robert Schulze, Wikipedia]

Bose-Einstein condensates 
[top: JILA group, bottom: Ketterle et al.]



VORTEX RECONNECTION IN CLASSICAL FLUIDS

Before the reconnection
‣ Two vortex tubes (intense 

vorticity) approaching 
each others

After the reconnection
‣ Vortex tubes and other 

vortex structures emerge 
and separate
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ONE mechanism by which fluid flows increase their complexity is 
through the instability of vortex filaments. When an instability 
brings vortex filaments of opposite circulation together, the 
filaments may break and rejoin in a process known as reconnection. 
This process of instability and reconnection leads to some funda-
mental changes in the topology of flows. Here we present experi-
mental observations of a special type of instability in which two 
colliding vortex rings become unstable and reconnect to form a 
series of smaller rings. Although this phenomenon was briefly 
noted more than a decade agot, no detailed observations were 
made, and little is known about the mechanisms involved. We have 
used coloured dyes to reveal the detailed structure of the small 
rings and many other features, including a short-wavelength insta-
bility around the circumference of the colliding rings. At high 
Reynolds number, collision leads to a turbulent cloud, with the 
occasional appearance of small rings. 

The experiment was conducted in water in a glass tank (1.22 m 
long, 0.36 m wide and 0.47 m deep) in which were immersed 
two horizontally opposed nozzles spaced 220 mm apart. The 
position of one nozzle could be finely adjusted to make the rings 
collide exactly head-on. Both nozzles were connected to a piston, 
which ejected short, equal pulses of water from both nozzles 
simultaneously to produce two identical vortex rings travelling 
towards each other. Accurate, repeatable results were achieved 

FIG. 1 A sequence of photographs showing different stages 
of the head-on collision between two identical vortex rings. 
The initial Reynolds number of each ring is roughly 1,000. 
The first photograph in the sequence, a, has been arbitrarily 
assigned as t = 0.00 s. The elapsed time for the subsequent 
stages of the collision is shown in each photograph, with 
different time intervals adopted to illustrate the main features 
of the flow. The 'membrane' structure with concentric ribs 
observed in b- f occurs because the vortex rings consist of 
rolled-up spiral dye sheets which become squashed and 
flattened during the collision. Each turn of the sheet forms 
a fold which becomes one of the concentric ribs on the 
membrane. Because of the effect of viscous diffusion, we do 
not believe that the membrane contains much vorticity. 
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by driving the piston with an electronically controlled stepping 
motor: this meant that the circulation and Reynolds number of 
the rings could also be determined. The vortex rings were made 
visible by releasing neutrally buoyant dyes around the circumfer-
ence of each nozzle; the resulting flow patterns were recorded 
using a video recorder. 

Figure 1 shows different stages of a head-on collision for a 
Reynolds number (Re) of -1,000. (The initial Reynolds number 
of each ring is defined by UD / IJ, where U is the initial translation 
velocity, D is the diameter of the ring and IJ is the kinematic 
viscosity.) Figure 1 b shows that when the two vortex rings are 
close to one another, the velocity induced by one ring on the 
other causes both rings to grow in diameter. The early stages 
of this growth follow the predictions of a inviscid analysis 
reasonably well, but when each ring has increased in size to 
about four times its initial diameter, a symmetrical instability 
in the form of azimuthal waviness begins to develop. As time 
progresses, the waves on the rings grow until they touch at the 
locations of maximum inward displacement. At the points of 
contact, the segments of the two vortex filaments eventually 
become interconnected to form small rings, a process commonly 
referred to as 'vortex reconnection'. As can be seen in Fig. 1 e, 
the observation that each small ring is made up of both red and 
blue dye indicates that it consists of segments from both of the 
original rings (Fig. 2 shows a close-up view of the small rings). 
Throughout the process of reconnection, the original vortex 
rings continue to grow in diameter, albeit at a slower rate. This 
growth is associated with stretching of the contact regions 
between the waves, and seems to be related to the reconnection 
process. Once the small rings have fully formed, the original 
rings cease to exist, and the small rings then convect away 
radially from the central axis at slightly different speeds. The 
azimuthal waves that occur during the collision do not always 
form a regular pattern around the rings: the wavelength of the 
instability varies along the circumference and from run to run. 
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VORTEX RECONNECTION IN CLASSICAL FLUIDS

[Kleckner & Irvine, Nature 2013]



VORTEX RECONNECTION CLASSICAL VS. QUANTUM FLUIDS

Trefoil decaying in classical viscous fluids 
[Kurstulovic, private communication]

Trefoil decaying in classical quantum fluids 
[Proment et al., PRE 2012]

‣ Complicate vortex 
structures are created 
after the reconnection

‣ As the circulation takes only 
quantised value, vortices 
simply reconnect exchanging 
their segments



VORTEX RECONNECTIONS IN SUPERFLUIDS

[Serafini et al., PRL 2015]

[Paoletti et al., PNAS 2008]

��(t)

�+(t)

�

t

Vortex reconnections in superfluid liquid 
helium (top) and BEC of cold gases (bottom)



MATHEMATICAL MODELS: BIOT-SAVART (AND LIA)

The Biot-Savart (BS) model is formally derived by the 
incompressible Euler’s equation with filamentary vorticity (in 2D is 
the point vortex model)

vfil(x, t) = − Γ
4π ∫ℒ

[x − R(ℓ, t)] × dR(ℓ, t)

x − R(ℓ, t) 3

Local induction approximation (LIA)

·R(t) = Γ
4π

ln ( L0
a0 ) + %(1) κb̂

[Saffman, Vortex Dynamics ; Pismen, Vortices in Nonlinear Fields]

circulation'T f
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MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

Derived independently by Gross and Pitaevskii in the 1960s

iℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ = 0

‣ This is nothing but the nonlinear Scrhoedinger equation (water waves, nonlinear 
optics, cosmic strings)

‣ Integrable only in one spatial dimensions
‣ In more than one spatial dimensions, GP conserves particles (number of bosons), 

linear momentum and energy, that is

N = ∫ |ψ |2 dV , P = iℏ
2 ∫ (ψ∇ψ* − ψ*∇ψ) dV and

H = ∫ ℏ2

2m
|∇ψ |2 + g

2 |ψ |4 dV

[Pitaevskii & Stringari, 2003]



MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

Derived independently by Gross and Pitaevskii in the 1960s

iℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ = 0

i
∂ψ
∂t

= c
2ξ (−ξ2 ∇2ψ + m

ρ0
|ψ |2 ψ)

‣ Uniform solution

‣ The healing length  is the only inherent length scale of the 

system 

‣ Linearising over the uniform state, the large-scale speed of sound is 

‣ The GP equation can be recasted to

|ψ0 | = ρ0/m

ξ = ℏ2/(2mgρ0)

c = gρ0/m2

[Pitaevskii & Stringari, 2003]



MATHEMATICAL MODELS: GROSS-PITAEVSKII (GP)

Using Madelung transformation  and 

defining density and velocity as  and , respectively, then                   

ψ = ρ/m exp[iϕ/( 2cξ)]
ρ v = ∇ϕ

∂ρ
∂t

+ ∇ ⋅ (ρv) = 0

∂v
∂t

+ (v ⋅ ∇)v = − c2

ρ0
∇ρ + c2ξ2 ∇

∇2 ρ

ρ

‣ The GP models an inviscid, barotropic, and irrotational fluid
‣ The last term of the second equation, the quantum pressure, 

becomes negligible at scales larger than the healing length  ξ

i
∂ψ
∂t

= c
2ξ (−ξ2 ∇2ψ + m

ρ0
|ψ |2 ψ)

[Nore et al., Phys. Fluids 1997] 



THE GROSS-PITAEVSKII MODEL

|ψ |2 /ρ0 = ρ/ρ0 profile (in 2d)arg(ψ) profile (in 2d)

[Pitaevskii,  JETP 1961]
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defining density and velocity as  and , respectively, then                   

ψ = ρ/m exp[iϕ/( 2cξ)]
ρ v = ∇ϕ

i
∂ψ
∂t

= c
2ξ (−ξ2 ∇2ψ + m

ρ0
|ψ |2 ψ)



VORTEX RECONNECTIONS IN GP

[Koplik & Levine, PRL 1993] 

‣ Vortices naturally reconnect 
in GP

‣ Kelvin’s theorem does not 
apply due to density 
depletion at the vortex core 
(quantum pressure term)

‣ Numerically, it is quite easy to 
prescribe any filamentary 
initial configuration in the GP 
model



OUR NUMERICAL EXPERIMENTS IN GP

‣ decay of two linked rings 
(Hopf link)

‣ vary the offset parameters 
, spanning over 49 

different configurations
‣ track accurately the positions 

of the vortex filaments

(d1, d2)

2

FIG. 1. (Color online) (a) Sketch of a vortex reconnection event in quantum fluids: at the reconnection time tr the reconnecting
filaments are locally tangent to the plane xOy, here depicted in grey, and form the reconnecting angle �

+. The vorticity of the
filaments is depicted with grey arrows. (b) The Hopf link initial condition used to create the di↵erent realizations, with visual
indication of the o↵set parameters (d1, d2).

parameter  of a BEC made of dilute locally-interacting
bosons, but qualitatively able to mimic a generic quan-
tum fluid [11]. The GP equation, casted in terms of the
healing length ⇠ and the sound velocity c, reads

i
@ 

@t
=

cp
2⇠

✓
�⇠2r2 +

m

⇢0
| |2 

◆
, (1)

where ⇢0 is the bulk superfluid density and m the mass
of a boson. When the GP equation is linearized about
the uniform bulk value | 0| =

p
⇢0/m, dispersive e↵ects

arise at scales smaller than ⇠ and (large-scale) sound
waves e↵ectively propagate at speed c. In this Letter
lengths and times are expressed in units of ⇠ and ⌧ = ⇠/c,
respectively. Thanks to the Madelung transformation
 (x, t) =

p
⇢(x, t)/m exp[i�(x, t)/(

p
2c⇠)], eq. (1) can

be interpreted as a model for an irrotational inviscid
barotropic fluid of density ⇢ and velocity v = r�. Vor-
tices arise as topological defects of circulation � = h/m =
2
p
2⇡c⇠ and vanishing density core size order of ⇠ [12].

In the previous formula, h is the Planck constant.
We integrate numerically the GP model using a stan-

dard pseudo-spectral code evolved in time by a forth-
order Runge–Kutta scheme. The computational box is
periodic with sides of length L = 128⇠; 2563 colloca-
tion points are used. The initial Hopf link is prepared
by superimposing two rings of radius R = 18⇠, each of
them lying on a plane orthogonal to the other. The order
parameter of each ring is numerically obtained by using
a Newton–Raphson and biconjugate-gradient technique
[13], allowing to minimize the initial sound excitations in
the system. A set of 49 di↵erent realizations are obtained
by changing the o↵sets (d1, d2) of one ring as sketched in
Fig.1(b), taking di 2 [�9⇠, 9⇠] with unit step of 3⇠. Dur-
ing the evolution one or more reconnection events occur.

It has been shown [14–17] that about the reconnection
event, the distance between the two filaments behaves as

�±(t) = A±(�|t� tr|)1/2 , (2)

where A± are dimensionless pre-factors and tr is the re-
connection time; the superscripts � and + label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all recon-
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FIG. 2. (Color online) Values of approach and separation
pre-factors A

+ and A
�. Red points correspond to data of

the present work. Gray left and right triangles correspond to
reconnections of free and trapped vortices respectively, from
Galantucci et al.[16]; other symbols from Villois et al. [15].

necting events and measure A±. Their values are plot-
ted in red dots in Fig. 2. Remarkably, the reconnecting
filaments always separate faster (or at an almost equal
rate) than they approach, that is A+ � A�. The clear
asymmetry recorded in the distribution of the A±s is the
fingerprint of the irreversible dynamics characterising the
vortex reconnection process. For completeness, we also
report in the figure, using di↵erent symbols, the pre-
factor measurements obtained in previous works [15, 16],
which corroborate even further our results. In what fol-
lows we quantitatively relate the asymmetry in the dis-
tribution of the pre-factors with the irreversible energy
transfer between the vortex-type and density/phase ex-
citation families occurring during a reconnection event.
Previous numerical studies of the GP model have indeed
reported the clear emission of a sound pulse during re-
connection events [19, 20]. A series of snapshots showing
the sound pulse emitted during the decay of the Hopf
link in one of our realizations is reported in [1].
The simple linear theory neglecting the nonlinear term

of the GP model [14, 15], valid in the limit �± ! 0, pro-
vides an insight into the dynamics of reconnecting pa-
rameters as the the order parameter can be found ana-
lytically. It predicts that the filaments reconnect tangent
to a plane, in our reference frame the z = 0, see Fig. 1(a),

[Villois et al., JPhysA 2016] 

Example of the evolution of the density 
field  of an Hopf link realisationρ



ABOUT RECONNECTION: LINEAR THEORY APPROXIMATION

δ± (t) = A± Γ | t − tr |
ϕ+ = 2arcot(Ar) , where Ar = A+ /A−

[Nazarenko & West, JLTP 2003]

δ± (t) ≤ ξ ⟹ i
∂ψ
∂t

= c
2ξ (−ξ2 ∇2ψ + m

ρ0
|ψ |2 ψ)

‣ same scaling  before 
and after, only the pre-factors       
change 

‣ filaments reconnect tangent to 
a plane and their projections 
are branches of an hyperbola 

δ ∝t1/2

A±
ϕ+

[Villois et al., PRFluids 2017] 
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connection events [19, 20]. A series of snapshots showing
the sound pulse emitted during the decay of the Hopf
link in one of our realizations is reported in [1].
The simple linear theory neglecting the nonlinear term

of the GP model [14, 15], valid in the limit �± ! 0, pro-
vides an insight into the dynamics of reconnecting pa-
rameters as the the order parameter can be found ana-
lytically. It predicts that the filaments reconnect tangent
to a plane, in our reference frame the z = 0, see Fig. 1(a),

ASYMMETRY IN THE DISTRIBUTION OF THE RATES A±

Red points data of this work, other symbols are from [Villois et al., PRFluids 2018] and [Galantucci et al., PNAS 2019]

CLEAR EVIDENCE OF IRREVERSIBLE DYNAMICS, EVEN IF THE GP 
MODEL IS TIME-REVERSIBLE. HOW TO EXPLAIN THIS ASYMMETRY?

2

FIG. 1. (Color online) (a) Sketch of a vortex reconnection event in quantum fluids: at the reconnection time tr the reconnecting
filaments are locally tangent to the plane xOy, here depicted in grey, and form the reconnecting angle �

+. The vorticity of the
filaments is depicted with grey arrows. (b) The Hopf link initial condition used to create the di↵erent realizations, with visual
indication of the o↵set parameters (d1, d2).

parameter  of a BEC made of dilute locally-interacting
bosons, but qualitatively able to mimic a generic quan-
tum fluid [11]. The GP equation, casted in terms of the
healing length ⇠ and the sound velocity c, reads

i
@ 

@t
=

cp
2⇠

✓
�⇠2r2 +

m

⇢0
| |2 

◆
, (1)

where ⇢0 is the bulk superfluid density and m the mass
of a boson. When the GP equation is linearized about
the uniform bulk value | 0| =

p
⇢0/m, dispersive e↵ects

arise at scales smaller than ⇠ and (large-scale) sound
waves e↵ectively propagate at speed c. In this Letter
lengths and times are expressed in units of ⇠ and ⌧ = ⇠/c,
respectively. Thanks to the Madelung transformation
 (x, t) =

p
⇢(x, t)/m exp[i�(x, t)/(

p
2c⇠)], eq. (1) can

be interpreted as a model for an irrotational inviscid
barotropic fluid of density ⇢ and velocity v = r�. Vor-
tices arise as topological defects of circulation � = h/m =
2
p
2⇡c⇠ and vanishing density core size order of ⇠ [12].

In the previous formula, h is the Planck constant.
We integrate numerically the GP model using a stan-

dard pseudo-spectral code evolved in time by a forth-
order Runge–Kutta scheme. The computational box is
periodic with sides of length L = 128⇠; 2563 colloca-
tion points are used. The initial Hopf link is prepared
by superimposing two rings of radius R = 18⇠, each of
them lying on a plane orthogonal to the other. The order
parameter of each ring is numerically obtained by using
a Newton–Raphson and biconjugate-gradient technique
[13], allowing to minimize the initial sound excitations in
the system. A set of 49 di↵erent realizations are obtained
by changing the o↵sets (d1, d2) of one ring as sketched in
Fig.1(b), taking di 2 [�9⇠, 9⇠] with unit step of 3⇠. Dur-
ing the evolution one or more reconnection events occur.

It has been shown [14–17] that about the reconnection
event, the distance between the two filaments behaves as

�±(t) = A±(�|t� tr|)1/2 , (2)

where A± are dimensionless pre-factors and tr is the re-
connection time; the superscripts � and + label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all recon-
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FIG. 2. (Color online) Values of approach and separation
pre-factors A

+ and A
�. Red points correspond to data of

the present work. Gray left and right triangles correspond to
reconnections of free and trapped vortices respectively, from
Galantucci et al.[16]; other symbols from Villois et al. [15].

necting events and measure A±. Their values are plot-
ted in red dots in Fig. 2. Remarkably, the reconnecting
filaments always separate faster (or at an almost equal
rate) than they approach, that is A+ � A�. The clear
asymmetry recorded in the distribution of the A±s is the
fingerprint of the irreversible dynamics characterising the
vortex reconnection process. For completeness, we also
report in the figure, using di↵erent symbols, the pre-
factor measurements obtained in previous works [15, 16],
which corroborate even further our results. In what fol-
lows we quantitatively relate the asymmetry in the dis-
tribution of the pre-factors with the irreversible energy
transfer between the vortex-type and density/phase ex-
citation families occurring during a reconnection event.
Previous numerical studies of the GP model have indeed
reported the clear emission of a sound pulse during re-
connection events [19, 20]. A series of snapshots showing
the sound pulse emitted during the decay of the Hopf
link in one of our realizations is reported in [1].
The simple linear theory neglecting the nonlinear term

of the GP model [14, 15], valid in the limit �± ! 0, pro-
vides an insight into the dynamics of reconnecting pa-
rameters as the the order parameter can be found ana-
lytically. It predicts that the filaments reconnect tangent
to a plane, in our reference frame the z = 0, see Fig. 1(a),

δ± (t) = A± Γ | t − tr |
ϕ+ = 2arcot(Ar)
given Ar = A+ /A−
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III. MOMENTUM AND ENERGY TRANSFERS DURING A RECONNECTION

As it has been observed in previous works [24, 29, 30] and clearly displayed in Fig.2, when a vortex reconnection
takes place in a quantum fluid, a sound pulse is excited. Energy and momentum are thus transferred from the
incompressible to the compressible degrees of freedom of the superfluid in an irreversible manner. The aim of this
section, and the main result of this work, is to develop an asymptotic matching theory that allows for quantifying
such energy and momentum exchanges.

In the GP model, the total energy (3) and linear momentum (4) are conserved during the reconnection process,
as they are integrals of motion. Well before a reconnection event, practically only the presence of vortex filaments
contribute to the invariants, whereas after reconnection, both filaments and compressible waves add up their con-
tributions to them. If one is able to estimate the contribution of the filaments, then the contribution of density
waves can be deduced using the conservation of the invariants. In the case of energy, such decomposition can be
easily done numerically by splitting the kinetic energy term into the incompressible and compressible parts [17]. Such
measurements were performed in [1] and will be reproduced below in our discussions.

Our analytical treatment of the problem is as follows. When the filaments are far from each other, i.e. �(t)±
� ⇠,

their dynamics of mainly driven by the Biot-Savart model. In that region we might use the vortex filament description
to evaluate their energy and momentum of the superfluid. On the other hand, when �

±(t) ⌧ ⇠, the dynamics
is governed by the linear regime given by the Schroedinger equation. Vortices then reconnect following the laws
described in the preceding section. We thus describe the reconnection matching, sketched in Fig.6, as follows. Before
reconnection, some Biot-Savart dynamics leads to the pre-reconnection input configuration R�

1,2 for the filaments
about the vortex reconnection point. The Biot-Savart description is assumed to be valid down to a distance �

� = �lin,
where �lin is of the order of few healing lengths. From there, the filaments are driven by the Schroedinger equation
allowing them to reconnect. After the reconnection, this linear regime is valid until the vortices separate up to
a distance �

+ = �lin. The linear evolution thus provides the output post-reconnection configuration R+
1,2 for the

filaments. From there onwards, the dynamics is again governed by the Biot-Savart model. Note that the linear regime

time

Biot-Savart model Schrödinger equation

input output

�
�(t) � ⇠
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FIG. 6. (Colour online) A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is driven by the
Schroedinger equation.

corresponds only to the dynamics inside the orange-greenish box in Fig. 6. We can thus consider the linear regime as
the regularization mechanism allowing vortex reconnections in the Biot-Savart model.

Summarizing, in order to compute the di↵erences before and after the reconnection in the incompressible energy
and momentum of the superfluid, we use the theoretical description R±

1,2 for the filaments given in Eqs. (27-30).
Namely, we use such parametrization when the distance is

�
� = �

+ = �lin & ⇠ , (36)

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime description may
be still valid at distances beyond the healing length ⇠ is justified by numerical evidence [25].

‣ when  linear theory (linear Schrödinger)
‣ when  nonlinear theory using vortex filament model or 

local induction approximation (LIA)
‣ matching of the two theories at 

δ(t) ≤ δlin
δ(t) ≥δlin

δ(t) = δlin
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∂ψ
∂t

= − Γ
4π

∇2ψ

ψr(x, y, z) = 1
ζ5/2 p [z − A(x cos θ + y sin θ)2 + B(−x cos θ + y sin θ)2

2ζ ] + i [z − Cx2 + Dy2

2ζ ]

A general second-order polynomial solution at the reconnection time  
having two nodal-lines (vortices) is given by

tr = 0

5

(a) (b)

FIG. 3. (Colour online) Here p = �1, A = �2, B = �1, C = �2, D = 1, ✓ = ⇡/3 and lengths are rescaled by ⇣. (a) An example
of the two intersecting iso-surfaces Re( r) = 0 and Im( r) = 0 of eq. (11). (b) The hyperbola resulting from the projection of
the nodal lines onto the z = 0 plane for the times before, t = �1, and after, t = 1, the reconnection time tr = 0.

where p = ±1, (A, B, C, D) 2 R and ✓ 2 [0,⇡] are dimensionless parameters, we will call them wave-function
parameters in what follows. ⇣ > 0 is a characteristic length. The nodal lines of eq. (11) can be easily identified by
intersecting the two iso-surfaces Re( r) = 0 and Im( r) = 0: Figure 3(a) shows an example of this intersection when
setting the parameters to p = 1, A = �2, B = �1, C = �2, D = 1, ✓ = ⇡/3 and where lengths are rescaled by ⇣.

Under the linear Schroedinger operator in eq. (10) the solution in time reads

 (x, y, z, t) = e
it �

4⇡ r2

 r(x, y, z) =

✓
1 + it

�

4⇡
r

2

◆
 r(x, y, z) . (12)

After some tedious algebra (see the Mathematica notebook available as Supplemental Material [37]), we obtain that
the evolution of the wave-function nodal lines Re( ) = 0 and Im( ) = 0 result in the equations

z =
(A + B)(x2 + y

2) + (A � B) [(x � y)(x + y) cos(2✓) + 2xy sin(2✓)]

4⇣
�

C + D

4p⇡⇣
�t (13)

and

z =
Cx

2 + Dy
2

2⇣
+

A + B

4p⇡⇣
�t , (14)

respectively.
By simplifying the z-dependence in Eqs. (13) and (14), one finds that the projection of the nodal lines onto the

z = 0 plane satisfies the equation

(A + B � 2C)x2 + (A + B � 2D)y2 + (A � B) [(x � y)(x + y) cos(2✓) + 2xy sin(2✓)] =
A + B + C + D

p⇡
�t . (15)

For a suitable choice of the dimensionless parameters, this relation identifies a hyperbola; an example of it is shown
in Fig. 3(b) where, again, p = �1, A = �2, B = �1, C = �2, D = 1, ✓ = ⇡/3 and lengths are rescaled by ⇣. It is
important to notice that the (x, y) axes can always be rotated in order to ensure that the hyperbola asymptotes are
mirrored with respect to the two axes. This property simply reflects the fact that eq. (15) can be re-expressed in its
normal form by a suitable rotation that depends on the chosen value of the wave-function parameter ✓. As this is
valid for all ✓ 2 [0,⇡), without any loss of generality we choose in the following of our work the specific value

✓ ⌘ 0 , (16)

which greatly simplifies the calculations. The projection of the nodal lines onto the z = 0 plane now results in

�
C � A

B � D
x

2 + y
2 =

A + B + C + D

2(B � D)p⇡
�t , (17)

p = ± 1 , (A, B, C, D) ∈ℝ ,
θ ∈[0,π] , ζ > 0 is a generic length scale

‣ The vortices are identified as the 
intersection of  and 

‣ Without any loss of generality, we set 
 as this is a quadratic form

Re(ψr) = 0 Im(ψr) = 0

θ = 0
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∇2ψ ⟹ ψ(x, y, z, t) = (1 + it
Γ
4π

∇2) ψr(x, y, z)

− C − A
B − D

x2 + y2 = A + B + C + D
2(B − D)pπ

Γt

Once evolved in time, the wave-function reads
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FIG. 4. (Colour online) Sketch of the reconnecting filaments projected (a) onto the z = 0 plane and (b) onto the y = 0 plane.

by assuming, from now onwards, that B 6= D.
Finally, by simplifying the y-dependence in Eqs. (13) and (14), we find that the projection of the nodal lines onto

the y = 0 plane satisfies the equation

z =
BC � AD

2(B � D)⇣
x

2 +
D(C + D) + B(A + B)

4(B � D)p⇡⇣
�t , (18)

that is a parabola that shifts along the z-axis at constant speed.

B. Region of validity of the other wave-function parameters

We denote by R�
1 and R�

2 the sets of points of the two vortex filaments before reconnection and by R+
1 and

R+
2 the ones after reconnection. Without loss of generality we may assume: that (i) about the reconnection point,

R�
1 ⇢ {y > 0} and R�

2 ⇢ {y < 0} whereas R+
1 ⇢ {x < 0} and R+

2 ⇢ {x > 0}; and that (ii) the orientation of the
vorticity follows the arrows as in the sketch displayed in Fig. 4(a). In order to find the range of the admissible values
of the wave-function parameters p ± 1 and (A, B, C, D) 2 R of eq. (11), we thus need to impose the following validity
conditions.

• Existence of the hyperbola. At the reconnection time tr = 0 we want the hyperbola asymptotes y =
±

p
(C � A)/(B � D) x set by eq. (17) to be real (in other words we want the equation to describe a hy-

perbola and not an ellipse). This reduces to the condition

C � A

B � D
� 0 . (19)

• Convention on the location of the filaments. Our convention adopts that, about the reconnection point, the
positions of the filaments satisfy R�

1 ⇢ {y > 0} and R�
2 ⇢ {y < 0} whereas R+

1 ⇢ {x < 0} and R+
2 ⇢ {x > 0}.

Hence, by evaluating eq. (17) at times t < 0 and t > 0 we obtain that the following conditions, respectively,
must hold

(B � D) p (C + D + A + B) < 0 and (C � A) p (C + D + A + B) < 0 . (20)

• Convention on the vorticity orientation of the filaments. The orientation of the filaments can be evaluated by
computing the pseudo-vorticity ! = rRe( ) ⇥ rIm( ) of the wave-function in eq. (12) at its nodal lines [18].
In order to impose the vorticity orientations as the arrows sketched in Fig. 4(a) the following conditions

8
><

>:

p = �1

B < D

A > C

or

8
><

>:

p = 1

B > D

A < C

(21)

z = BC − AD
2(B − D)ζ x2 + D(C + D) + B(A + B)

4(B − D)pπζ
Γt
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FIG. 4. (Colour online) Sketch of the reconnecting filaments projected (a) onto the z = 0 plane and (b) onto the y = 0 plane.

by assuming, from now onwards, that B 6= D.
Finally, by simplifying the y-dependence in Eqs. (13) and (14), we find that the projection of the nodal lines onto

the y = 0 plane satisfies the equation
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that is a parabola that shifts along the z-axis at constant speed.

B. Region of validity of the other wave-function parameters

We denote by R�
1 and R�

2 the sets of points of the two vortex filaments before reconnection and by R+
1 and

R+
2 the ones after reconnection. Without loss of generality we may assume: that (i) about the reconnection point,
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1 ⇢ {y > 0} and R�

2 ⇢ {y < 0} whereas R+
1 ⇢ {x < 0} and R+

2 ⇢ {x > 0}; and that (ii) the orientation of the
vorticity follows the arrows as in the sketch displayed in Fig. 4(a). In order to find the range of the admissible values
of the wave-function parameters p ± 1 and (A, B, C, D) 2 R of eq. (11), we thus need to impose the following validity
conditions.

• Existence of the hyperbola. At the reconnection time tr = 0 we want the hyperbola asymptotes y =
±

p
(C � A)/(B � D) x set by eq. (17) to be real (in other words we want the equation to describe a hy-

perbola and not an ellipse). This reduces to the condition

C � A

B � D
� 0 . (19)

• Convention on the location of the filaments. Our convention adopts that, about the reconnection point, the
positions of the filaments satisfy R�

1 ⇢ {y > 0} and R�
2 ⇢ {y < 0} whereas R+

1 ⇢ {x < 0} and R+
2 ⇢ {x > 0}.

Hence, by evaluating eq. (17) at times t < 0 and t > 0 we obtain that the following conditions, respectively,
must hold

(B � D) p (C + D + A + B) < 0 and (C � A) p (C + D + A + B) < 0 . (20)

• Convention on the vorticity orientation of the filaments. The orientation of the filaments can be evaluated by
computing the pseudo-vorticity ! = rRe( ) ⇥ rIm( ) of the wave-function in eq. (12) at its nodal lines [18].
In order to impose the vorticity orientations as the arrows sketched in Fig. 4(a) the following conditions
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projections onto the  y = 0 planeprojections onto the  z = 0 plane
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2Λ < [tan2 ( ϕ+

2 ) − 1](B + D) ∩ [(p = − 1 ∩ D > B) ∪ (p = 1 ∩ D < B)]

− C − A
B − D

x2 + y2 = A + B + C + D
2(B − D)pπ

Γt
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FIG. 4. (Colour online) Sketch of the reconnecting filaments projected (a) onto the z = 0 plane and (b) onto the y = 0 plane.

by assuming, from now onwards, that B 6= D.
Finally, by simplifying the y-dependence in Eqs. (13) and (14), we find that the projection of the nodal lines onto

the y = 0 plane satisfies the equation
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We denote by R�
1 and R�

2 the sets of points of the two vortex filaments before reconnection and by R+
1 and

R+
2 the ones after reconnection. Without loss of generality we may assume: that (i) about the reconnection point,
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1 ⇢ {y > 0} and R�

2 ⇢ {y < 0} whereas R+
1 ⇢ {x < 0} and R+

2 ⇢ {x > 0}; and that (ii) the orientation of the
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(C � A)/(B � D) x set by eq. (17) to be real (in other words we want the equation to describe a hy-

perbola and not an ellipse). This reduces to the condition

C � A

B � D
� 0 . (19)

• Convention on the location of the filaments. Our convention adopts that, about the reconnection point, the
positions of the filaments satisfy R�

1 ⇢ {y > 0} and R�
2 ⇢ {y < 0} whereas R+

1 ⇢ {x < 0} and R+
2 ⇢ {x > 0}.

Hence, by evaluating eq. (17) at times t < 0 and t > 0 we obtain that the following conditions, respectively,
must hold

(B � D) p (C + D + A + B) < 0 and (C � A) p (C + D + A + B) < 0 . (20)

• Convention on the vorticity orientation of the filaments. The orientation of the filaments can be evaluated by
computing the pseudo-vorticity ! = rRe( ) ⇥ rIm( ) of the wave-function in eq. (12) at its nodal lines [18].
In order to impose the vorticity orientations as the arrows sketched in Fig. 4(a) the following conditions
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FIG. 4. (Colour online) Sketch of the reconnecting filaments projected (a) onto the z = 0 plane and (b) onto the y = 0 plane.
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(B � D) p (C + D + A + B) < 0 and (C � A) p (C + D + A + B) < 0 . (20)

• Convention on the vorticity orientation of the filaments. The orientation of the filaments can be evaluated by
computing the pseudo-vorticity ! = rRe( ) ⇥ rIm( ) of the wave-function in eq. (12) at its nodal lines [18].
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III. MOMENTUM AND ENERGY TRANSFERS DURING A RECONNECTION

As it has been observed in previous works [24, 29, 30] and clearly displayed in Fig.2, when a vortex reconnection
takes place in a quantum fluid, a sound pulse is excited. Energy and momentum are thus transferred from the
incompressible to the compressible degrees of freedom of the superfluid in an irreversible manner. The aim of this
section, and the main result of this work, is to develop an asymptotic matching theory that allows for quantifying
such energy and momentum exchanges.

In the GP model, the total energy (3) and linear momentum (4) are conserved during the reconnection process,
as they are integrals of motion. Well before a reconnection event, practically only the presence of vortex filaments
contribute to the invariants, whereas after reconnection, both filaments and compressible waves add up their con-
tributions to them. If one is able to estimate the contribution of the filaments, then the contribution of density
waves can be deduced using the conservation of the invariants. In the case of energy, such decomposition can be
easily done numerically by splitting the kinetic energy term into the incompressible and compressible parts [17]. Such
measurements were performed in [1] and will be reproduced below in our discussions.

Our analytical treatment of the problem is as follows. When the filaments are far from each other, i.e. �(t)±
� ⇠,

their dynamics of mainly driven by the Biot-Savart model. In that region we might use the vortex filament description
to evaluate their energy and momentum of the superfluid. On the other hand, when �

±(t) ⌧ ⇠, the dynamics
is governed by the linear regime given by the Schroedinger equation. Vortices then reconnect following the laws
described in the preceding section. We thus describe the reconnection matching, sketched in Fig.6, as follows. Before
reconnection, some Biot-Savart dynamics leads to the pre-reconnection input configuration R�

1,2 for the filaments
about the vortex reconnection point. The Biot-Savart description is assumed to be valid down to a distance �

� = �lin,
where �lin is of the order of few healing lengths. From there, the filaments are driven by the Schroedinger equation
allowing them to reconnect. After the reconnection, this linear regime is valid until the vortices separate up to
a distance �

+ = �lin. The linear evolution thus provides the output post-reconnection configuration R+
1,2 for the

filaments. From there onwards, the dynamics is again governed by the Biot-Savart model. Note that the linear regime

time

Biot-Savart model Schrödinger equation

input output

�
�(t) � ⇠
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FIG. 6. (Colour online) A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is driven by the
Schroedinger equation.

corresponds only to the dynamics inside the orange-greenish box in Fig. 6. We can thus consider the linear regime as
the regularization mechanism allowing vortex reconnections in the Biot-Savart model.

Summarizing, in order to compute the di↵erences before and after the reconnection in the incompressible energy
and momentum of the superfluid, we use the theoretical description R±

1,2 for the filaments given in Eqs. (27-30).
Namely, we use such parametrization when the distance is

�
� = �

+ = �lin & ⇠ , (36)

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime description may
be still valid at distances beyond the healing length ⇠ is justified by numerical evidence [25].

[Pismen, 1999]
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[Pismen, 1999]

‣ A useful parametrisation for the filaments, in terms of  and , so that 
they satisfy the shape found in the linear theory is
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As the filaments are branches 
of hyperbola they are of 
infinite length. We compute 
their integrals in a finite 
cylinder parallel to the z-axis, 
centred at the reconnection 
point (the origin) and of 
radius R > δlin
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FIG. 7. (Colour online) Projections of the reconnecting filaments and the cylinder onto the plane z = 0 before the reconnection
(a) and after the reconnection (b). Here the reconnection angle is �

+ = ⇡/3.

A. The cylindrical region of integration

As detailed in the following, the calculations of the linear momentum and energy of the vortices involve the
integration over the full length of the filaments. As we are interested in their di↵erences, to simplify the problem
we will consider only the segments of the filaments which lie inside the cylinder of circle of radius R centered at
the origin and having the cylindrical axis parallel to the z axis; the projection of the cylinder onto the z = 0 plane,
corresponding to the circle of radius R centered at the origin, is also sketched in Fig. 7.

The vortex filaments lie inside the cylinder when their parametrization satisfies |`|  L
± before and after the

reconnection, respectively, given

L
�(R/�lin) =

1

2
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8
>><
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Physically, it is natural to assume that R is larger, or much larger, than �lin. Note that, keeping Ar finite, we have

lim
R/�lin!1

L
�(R/�lin) = ln(R/�lin) + ln

 
4p

1 + A2
r

!
+ . . .

lim
R/�lin!1

L
+(R/�lin) = ln(R/�lin) + ln

 
4p

1 + A2
r

!
+ ln(Ar) + . . .

(39)

B. Linear momentum di↵erence

Following Pismen [38], the linear momentum of an incompressible and inviscid fluid with filamentary vorticity field
of intensity �, that is within the framework of the Biot-Savart model, reads

Pfil =
�

2

I
R ⇥ dR =

Z

L
pfil(`) d` , where pfil(`) =

�

2

X

filaments

R ⇥
@R

@`
(40)

is the momentum density (per unit of filament length) and the integration interval follows the parametrization of the
filaments. In our case ` 2 (�1, +1) and there are only two filaments before and two filaments after the reconnection.

L−(R /δlin) = 1
2 ln

8(R /δlin)2 + (A2
r − 1) + 2 [4 (R /δlin)2 − 1] [4 (R /δlin)2 + A2

r ]
A2r + 1

L+ (R /δlin) = 1
2 ln

8A2
r (R /δlin)2 + (1 − A2

r ) + 2Ar [4 (R /δlin)2 − 1] [4A2
r (R /δlin)2 + 1]

A2r + 1

The limits of integration, in the parametrisation of the filaments, are given by
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FIG. 9. (Colour online) Plots of the di↵erence in the total length of the filaments during the reconnection process, that is a
numerical estimation of eq (47), versus Ar for di↵erent values of |⇤|/⇣; here �lin = 1 and R/�lin = 2.

IV. DISCUSSIONS AND FUTURE PERSPECTIVES

Summarizing, following the calculations presented in Section III, we are able to estimate the linear momentum and
energy of the sound pulse emitted during a reconnection event. These reads

Ppulse = [0, 0, ��Pfil,z(�lin, Ar, R)]

Epulse = �
�L(Ar, |⇤|/⇠, �lin, R/�lin)

L0
Etot

, (54)

where the details of the functions can be found in eq.s (42) and (47), respectively. In particular, we underline that
for all (|⇤|/⇠, �lin, R/�lin)

Ppulse,z > 0 , for all Ar

Epulse > 0 , for Ar > 1
, (55)

explain the origin of the asymmetry observed in the distribution of the the pre-factors A
±, and the directionality

observed in the sound pulse emission.
Let us now to discuss further the nature of the sound pulse. As verified in reference [1] and apparent in Fig.2, the

pulse indeed propagates in a well defined direction. Figure 10(a) shows such a sound pulse, rescaled by the bulk density,
propagating along the positive z-direction after a reconnection characterized by the geometrical parameter Ar = 1.67.
The pulse is plotted versus time in Fig.10.a and versus the retarded time in Fig.10.b for di↵erent values of the z-
coordinate. We can observe that the pulse appears to move slightly slower than c. The signal shows some dispersive
e↵ects while time advances, an evidence that the pulse probably contains more than one Bogoliubov perturbation,
perhaps including high wave numbers. Also, the depth of its trough ⇢min decays as the pulse propagates following the
scaling / z

�2 typical of a three-dimensional wave signal originating from a point source, as depicted in Fig. 10(c). It
is however still unclear if the the pulse consists of a simple linear superposition of Bogoliubov perturbations, or if a
fully nonlinear subsonic coherent structure, like a Robert–Jones solitary wave [40], is also superimposed. A complete
analysis on the spectrum of the sound pulse and the possible presence of coherent structures is left for future works.

Concerning the energy transferred from the vortices to the pulse, we present in Fig.11a-b the comparison between our
theoretical prediction, Eq. (53), and the GP reconnection data obtained in [1] for di↵erent choices of �lin. The region
of validity of the theory, the colored regions depicted in Fig. 11, represents all the accessible values of the concavity
parameter ⇤ 2 R, with boundaries obtained from eq.s (48) and (52). We note that the specific value of the energy
di↵erence in Eq. (53) depends on the choice of �lin, but the conclusion that reconnection with Ar < 1 are unlucky to
occur, remains valid. Moreover, the fact that no energy exchange takes place for a symmetric reconnection Ar = 1,
suggests to plot �Ewav versus Ar � 1. Such plot is displayed in Fig.11.d, where the scaling �Ewav ⇠ (Ar � 1)0.71,
obtained by fit, is clearly observed for at least one decade and all values of �lin. A more accurate theory, providing
such scaling exponent is out of the scope of this work.
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Ppulse = − ΔPfil ∝(0, 0, 1 + A2
r

Ar ) ⟹ ΔPwav,z > 0

Example of sound pulse emission propagating along the positive z-axis

‣ propagation at almost speed of sound 
‣ some dispersive effects
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FIG. 10. (Color online) Traveling pulse emitted during a reconnection with Ar = 1.67. (a) Density around the pulse as function
of time for di↵erent values of the distance z to the reconnection plane. (b) Same as (b), but as a function of the retarded
time. (c) Depth of the traveling pulse trough ⇢min at di↵erent values of z compared with the 1/z

2 decay law predicted form
an acoustic pulse emitted from a point source. The theoretical formula is obtained by imposing the 1/z

2 decay and matching
the measured value of ⇢min at z0 = 20⇠, the smallest value of z at which the pulse was measured. The speed of sound is c and
⌧ = ⇠/c.
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FIG. 11. (Colour online) Energy radiated during reconnections as a function of Ar = A
+

/A
� for di↵erent values of �lin.

Numerical data from GP simulations obtained in [1] is confronted to our theoretical prediction in Eq. (53). (a) �lin = 4⇠. (b)
�lin = 8⇠. (c) LogLog plot of energy as a function of Ar � 1 for di↵erent values of �lin.

We should also remark on the possible role played by the center-line helicity Hc during a reconnection event. As
first observed in [31], the evolution of Hc shows a sudden drop (but still being continuous) during a reconnection if the
initial linking number between the vortex filaments is non-zero. This is certainly the case analyzed in [1], where the
initial configuration of the filaments, an Hopf link, has linking number equal to 2. The temporal evolution of a Hopf
link, for a case with Ar = 3.5, is displayed Fig. 12.a, where the helicity drop is clearly visible. One might be tempted
to think that the sudden drop in the center-line helicity �Hc is related to the properties of the reconnecting filaments,
for example their parameter Ar. Figure 12.b shows that �Hc as a function of the parameter Ar. Numerical data
do not correlate as well as the energy and no clear trend is observed. We can however speculate that the center-line
helicity drop may influence the amplitude and polarisation of the Kelvin waves forming on the vortex filaments after
the reconnection process. This research proposal constitutes another interesting direction for future works.

In conclusion, our theoretical results help to understand not only how vortex reconnections take place in quantum
fluids, but also why they do occur. Albeit the GP model is time reversible, the vortex reconnection process presents
a time asymmetry so that the system can naturally transfer part of the (kinetic) incompressible energy into its
compressible counterpart. In some sense, this observed temporal asymmetry can be interpreted as consequence of the
system being in an out-of-equilibrium stage and reconnections being a fast route towards reaching thermal equilibrium.
It will be very interesting to study vortex reconnections at finite temperatures, where a thermal bath of Bogoliubov
modes is present, to see if whether this asymmetry is reduced or destroyed completely. Furthermore, the situation
can be di↵erent when open conditions, like external forcing and damping terms acting at di↵erent length scales, are
introduced. In a fully developed turbulent state, fluctuations could provide enough energy to allow reconnections with
Ar < 1, but one might still expect skew distributions towards Ar > 1, as dissipation of turbulent flows do not vanishes
in the limit of infinite Reynolds numbers because of the dissipative anomaly of turbulence [41]. This is undoubtedly,
another interesting direction of research for future studies.
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FIG. 4. (Color online) (a) Relative increase of compressible
kinetic energy (solid blue) and relative vortex length change
(dashed red) about a reconnection event (denoted by the red
dots) for a typical realization. The green area corresponds
to the interval defined by �

±(t)  �lin = 6⇠. (b) Relative
energy transferred to waves during the reconnection process.
The cyan zone denotes the allowed values from the matching
theory.

the theoretical estimation �L, rendered in cyan color in
Fig. 4(b), are bounded between two lines obtained setting
⇤ = 0 (dashed line) and |⇤| ! 1 (solid line). The GP
data are all distributed within these admissible values,
thus confirming the accuracy of the matching theory.

Remarkably, the estimation of Epulse explains in a
straightforward way the time asymmetry between the
rates of approach and separation reported in Fig. 2. In-
dependently on the value of the concavity parameter ⇤,
the energy of the sound pulse is only non-negative when
A+ � A�, meaning that unless energy is externally pro-
vided to the reconnecting vortices, it is energetically im-
possible to have a reconnection event where A+ < A�,
or equivalently, where �+ > ⇡/2.

Closing remarks. In this Letter we reported numer-
ical evidence of the irreversible dynamics of vortex re-
connections in a scalar quantum fluid, and explain its
origin thanks to a matching theory developed concur-
rently in [1]. Our results can be extended to more compli-
cated quantum fluids where non-local interactions and/or
higher order nonlinearities are included, like BECs with
dipolar interactions, cold Fermi gases, and superfluid liq-
uid 4He.

In quantum fluid experiments, the detailed study of
vortex reconnections is still in its infancy. In current
BECs made of dilute gases, reconnecting vortices are cre-
ated only in a non-reproducible way using fast temper-

ature quenches [26]; however new protocols have been
proposed to create vortices in a reproducible manner [27].
In such setups, once the reconnection plane is identified,
it should be feasible to measure the rates of approach
and separation and detecting directionality of the sound
pulse, using for instance Bragg spectroscopy [28]. In
superfluid liquid 4He experiments, vortex reconnections
have been detected so far only at relatively hight tem-
perature where the normal component is non-negligible
[29]. This latter may provide energy but also dissipate it
through mutual friction, hence measuring experimentally
the distribution of the rates of approach and separation
at di↵erent temperatures would be particularly desirable.
Finally, let us come back to the concept of irreversibil-

ity. In the realizations presented in this Letter, almost
all of the superfluid kinetic energy is initially stored in
the vortex-type excitations. This is likely to cause the
observed statistical asymmetry in the distribution of the
rates of approach and separation to be maximized. At
finite temperatures or in a turbulent tangle, fluctuations
can provide extra energy to reduce this asymmetry, per-
haps allowing also for �+ > ⇡/2, but the time-asymmetry
should in principle remains as an inherent mechanism al-
lowing the system to reach the equilibrium. From a fluid
dynamical point of view, let us to remark that vortex
reconnections are allowed and regular, in classical fluids,
due to the presence of viscosity, while in quantum fluids,
thanks to a dispersive term. Showing whether the result-
ing dynamics of these two di↵erent fluids are equivalent
or not, in the limit where their respective regularization
scale tends to zero, is an appealing open problem. Com-
paring the results presented in this Letter with a similar
study in Navier–Stokes or a carefully regularized Biot-
Savart model might provide some insights on the sponta-
neous stochasticity and the dissipative anomaly of turbu-
lent flows, two concepts closely related to irreversibility.
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FIG. 1. (Color online) (a) Sketch of a vortex reconnection event in quantum fluids: at the reconnection time tr the reconnecting
filaments are locally tangent to the plane xOy, here depicted in grey, and form the reconnecting angle �

+. The vorticity of the
filaments is depicted with grey arrows. (b) The Hopf link initial condition used to create the di↵erent realizations, with visual
indication of the o↵set parameters (d1, d2).

parameter  of a BEC made of dilute locally-interacting
bosons, but qualitatively able to mimic a generic quan-
tum fluid [11]. The GP equation, casted in terms of the
healing length ⇠ and the sound velocity c, reads
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where ⇢0 is the bulk superfluid density and m the mass
of a boson. When the GP equation is linearized about
the uniform bulk value | 0| =

p
⇢0/m, dispersive e↵ects

arise at scales smaller than ⇠ and (large-scale) sound
waves e↵ectively propagate at speed c. In this Letter
lengths and times are expressed in units of ⇠ and ⌧ = ⇠/c,
respectively. Thanks to the Madelung transformation
 (x, t) =

p
⇢(x, t)/m exp[i�(x, t)/(

p
2c⇠)], eq. (1) can

be interpreted as a model for an irrotational inviscid
barotropic fluid of density ⇢ and velocity v = r�. Vor-
tices arise as topological defects of circulation � = h/m =
2
p
2⇡c⇠ and vanishing density core size order of ⇠ [12].

In the previous formula, h is the Planck constant.
We integrate numerically the GP model using a stan-

dard pseudo-spectral code evolved in time by a forth-
order Runge–Kutta scheme. The computational box is
periodic with sides of length L = 128⇠; 2563 colloca-
tion points are used. The initial Hopf link is prepared
by superimposing two rings of radius R = 18⇠, each of
them lying on a plane orthogonal to the other. The order
parameter of each ring is numerically obtained by using
a Newton–Raphson and biconjugate-gradient technique
[13], allowing to minimize the initial sound excitations in
the system. A set of 49 di↵erent realizations are obtained
by changing the o↵sets (d1, d2) of one ring as sketched in
Fig.1(b), taking di 2 [�9⇠, 9⇠] with unit step of 3⇠. Dur-
ing the evolution one or more reconnection events occur.

It has been shown [14–17] that about the reconnection
event, the distance between the two filaments behaves as

�±(t) = A±(�|t� tr|)1/2 , (2)

where A± are dimensionless pre-factors and tr is the re-
connection time; the superscripts � and + label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all recon-
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FIG. 2. (Color online) Values of approach and separation
pre-factors A

+ and A
�. Red points correspond to data of

the present work. Gray left and right triangles correspond to
reconnections of free and trapped vortices respectively, from
Galantucci et al.[16]; other symbols from Villois et al. [15].

necting events and measure A±. Their values are plot-
ted in red dots in Fig. 2. Remarkably, the reconnecting
filaments always separate faster (or at an almost equal
rate) than they approach, that is A+ � A�. The clear
asymmetry recorded in the distribution of the A±s is the
fingerprint of the irreversible dynamics characterising the
vortex reconnection process. For completeness, we also
report in the figure, using di↵erent symbols, the pre-
factor measurements obtained in previous works [15, 16],
which corroborate even further our results. In what fol-
lows we quantitatively relate the asymmetry in the dis-
tribution of the pre-factors with the irreversible energy
transfer between the vortex-type and density/phase ex-
citation families occurring during a reconnection event.
Previous numerical studies of the GP model have indeed
reported the clear emission of a sound pulse during re-
connection events [19, 20]. A series of snapshots showing
the sound pulse emitted during the decay of the Hopf
link in one of our realizations is reported in [1].
The simple linear theory neglecting the nonlinear term

of the GP model [14, 15], valid in the limit �± ! 0, pro-
vides an insight into the dynamics of reconnecting pa-
rameters as the the order parameter can be found ana-
lytically. It predicts that the filaments reconnect tangent
to a plane, in our reference frame the z = 0, see Fig. 1(a),
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FIG. 2. (Colour online) Snapshots of density iso-surfaces of a decaying Hopf link: times correspond to t = 0 (a), t = 53c/⇠

(b), t = 71c/⇠ (c), and t = 101/⇠/c (d). After the reconnection takes place (b), a clear sound pulse is created and propagates
unidirectionally.

other words, following the experience provided by these data, an educated observer could in principle guess the time
direction of a reconnection event. This fact is clear a manifestation of the irreversibility of the process.

Moreover, as the reconnecting filaments accelerate during a reconnection process, a directional sound pulse is
generated in the superfluid. Figure 2 shows a set of snapshots of the evolution of some iso-surfaces of the superfluid
density field to highlight the sound emission during a reconnection event following the decay of an Hopf link [1]. After
the reconnection takes place, here trec ' 53⇠/c, a distinctive variation of the bulk density (yellow-to-violet colors)
emerges at the reconnection point and propagates non-isotropically.

Explaining the origin of the asymmetry between the pre-factors A
± and characterizing the directionality and

intensity of the sound pulse are the main scopes of this work. In our reasoning and calculations we use two di↵erent
limits of the GP model: the linear model, essentially the Schroedinger equation where the nonlinear term of GP is
neglected, and the Biot-Savart model, where the compressible degrees of freedom of the superfluid are neglected. In
a nutshell, our main results follow a simple matching between these two limits and make use of the conservation of
total superfluid linear momentum and energy, eq.s (4) and (3), respectively.

The work is organized as follows. Section II describes exhaustively all the possible geometrical configurations taken
by two reconnecting filaments: subsections II A and II B explore the range of parameters of the wave-function about
a reconnection event, subsection IIC relates these wave-function’s parameters to a set of geometrical parameters for
the vortex filaments, finally subsection II D introduces a useful parameterization of the filaments in terms of the
geometrical parameters. Section III is devoted to the variations in time of the linear momentum and energy of the
filaments during a reconnection, and relate these to the emission of the sound pulse: subsection III A set the framework
for such study, while subsections III B and III C contain the detailed calculations of the linear momentum di↵erence
and energy variations, respectively. Section IV is left for the conclusions and future perspectives.

II. THE GEOMETRY OF THE RECONNECTING FILAMENTS

A. The reconnecting wave-function of the filaments

As previously obtained in [22, 25], about a reconnection event the nonlinear term of the Gross-Pitaevskii (GP)
model can be neglected, as the superfluid density vanishes at the vortex core. The dynamics is thus driven by the
linear Schroedinger equation

i@t = �
�

4⇡
r

2
 . (10)

Without any loss of generality we set the reconnection time tr = 0 and let the reconnection point be the origin of
our reference frame. The most general second-order-polynomial wave-function initial condition having two nodal lines
intersecting at the origin results in

 r(x, y, z) =
1

⇣5/2

⇢
p


z �

A(x cos ✓ + y sin ✓)2 + B(�x cos ✓ + y sin ✓)2

2⇣

�
+ i


z �

Cx
2 + Dy

2

2⇣

��
, (11)



SUMMARY AND CONCLUSIONS

‣ We found that the momentum of the 
sound pulse only propagates towards 
the positive z-axis

‣ We proposed a matching between 
linear theory and BS (and LIA)

9

III. MOMENTUM AND ENERGY TRANSFERS DURING A RECONNECTION

As it has been observed in previous works [24, 29, 30] and clearly displayed in Fig.2, when a vortex reconnection
takes place in a quantum fluid, a sound pulse is excited. Energy and momentum are thus transferred from the
incompressible to the compressible degrees of freedom of the superfluid in an irreversible manner. The aim of this
section, and the main result of this work, is to develop an asymptotic matching theory that allows for quantifying
such energy and momentum exchanges.

In the GP model, the total energy (3) and linear momentum (4) are conserved during the reconnection process,
as they are integrals of motion. Well before a reconnection event, practically only the presence of vortex filaments
contribute to the invariants, whereas after reconnection, both filaments and compressible waves add up their con-
tributions to them. If one is able to estimate the contribution of the filaments, then the contribution of density
waves can be deduced using the conservation of the invariants. In the case of energy, such decomposition can be
easily done numerically by splitting the kinetic energy term into the incompressible and compressible parts [17]. Such
measurements were performed in [1] and will be reproduced below in our discussions.

Our analytical treatment of the problem is as follows. When the filaments are far from each other, i.e. �(t)±
� ⇠,

their dynamics of mainly driven by the Biot-Savart model. In that region we might use the vortex filament description
to evaluate their energy and momentum of the superfluid. On the other hand, when �

±(t) ⌧ ⇠, the dynamics
is governed by the linear regime given by the Schroedinger equation. Vortices then reconnect following the laws
described in the preceding section. We thus describe the reconnection matching, sketched in Fig.6, as follows. Before
reconnection, some Biot-Savart dynamics leads to the pre-reconnection input configuration R�

1,2 for the filaments
about the vortex reconnection point. The Biot-Savart description is assumed to be valid down to a distance �

� = �lin,
where �lin is of the order of few healing lengths. From there, the filaments are driven by the Schroedinger equation
allowing them to reconnect. After the reconnection, this linear regime is valid until the vortices separate up to
a distance �

+ = �lin. The linear evolution thus provides the output post-reconnection configuration R+
1,2 for the

filaments. From there onwards, the dynamics is again governed by the Biot-Savart model. Note that the linear regime

time
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FIG. 6. (Colour online) A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is driven by the
Schroedinger equation.

corresponds only to the dynamics inside the orange-greenish box in Fig. 6. We can thus consider the linear regime as
the regularization mechanism allowing vortex reconnections in the Biot-Savart model.

Summarizing, in order to compute the di↵erences before and after the reconnection in the incompressible energy
and momentum of the superfluid, we use the theoretical description R±

1,2 for the filaments given in Eqs. (27-30).
Namely, we use such parametrization when the distance is

�
� = �

+ = �lin & ⇠ , (36)

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime description may
be still valid at distances beyond the healing length ⇠ is justified by numerical evidence [25].
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FIG. 10. (Color online) Traveling pulse emitted during a reconnection with Ar = 1.67. (a) Density around the pulse as function
of time for di↵erent values of the distance z to the reconnection plane. (b) Same as (b), but as a function of the retarded
time. (c) Depth of the traveling pulse trough ⇢min at di↵erent values of z compared with the 1/z

2 decay law predicted form
an acoustic pulse emitted from a point source. The theoretical formula is obtained by imposing the 1/z

2 decay and matching
the measured value of ⇢min at z0 = 20⇠, the smallest value of z at which the pulse was measured. The speed of sound is c and
⌧ = ⇠/c.
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FIG. 11. (Colour online) Energy radiated during reconnections as a function of Ar = A
+

/A
� for di↵erent values of �lin.

Numerical data from GP simulations obtained in [1] is confronted to our theoretical prediction in Eq. (53). (a) �lin = 4⇠. (b)
�lin = 8⇠. (c) LogLog plot of energy as a function of Ar � 1 for di↵erent values of �lin.

We should also remark on the possible role played by the center-line helicity Hc during a reconnection event. As
first observed in [31], the evolution of Hc shows a sudden drop (but still being continuous) during a reconnection if the
initial linking number between the vortex filaments is non-zero. This is certainly the case analyzed in [1], where the
initial configuration of the filaments, an Hopf link, has linking number equal to 2. The temporal evolution of a Hopf
link, for a case with Ar = 3.5, is displayed Fig. 12.a, where the helicity drop is clearly visible. One might be tempted
to think that the sudden drop in the center-line helicity �Hc is related to the properties of the reconnecting filaments,
for example their parameter Ar. Figure 12.b shows that �Hc as a function of the parameter Ar. Numerical data
do not correlate as well as the energy and no clear trend is observed. We can however speculate that the center-line
helicity drop may influence the amplitude and polarisation of the Kelvin waves forming on the vortex filaments after
the reconnection process. This research proposal constitutes another interesting direction for future works.

In conclusion, our theoretical results help to understand not only how vortex reconnections take place in quantum
fluids, but also why they do occur. Albeit the GP model is time reversible, the vortex reconnection process presents
a time asymmetry so that the system can naturally transfer part of the (kinetic) incompressible energy into its
compressible counterpart. In some sense, this observed temporal asymmetry can be interpreted as consequence of the
system being in an out-of-equilibrium stage and reconnections being a fast route towards reaching thermal equilibrium.
It will be very interesting to study vortex reconnections at finite temperatures, where a thermal bath of Bogoliubov
modes is present, to see if whether this asymmetry is reduced or destroyed completely. Furthermore, the situation
can be di↵erent when open conditions, like external forcing and damping terms acting at di↵erent length scales, are
introduced. In a fully developed turbulent state, fluctuations could provide enough energy to allow reconnections with
Ar < 1, but one might still expect skew distributions towards Ar > 1, as dissipation of turbulent flows do not vanishes
in the limit of infinite Reynolds numbers because of the dissipative anomaly of turbulence [41]. This is undoubtedly,
another interesting direction of research for future studies.

4

FIG. 4. (Color online) (a) Relative increase of compressible
kinetic energy (solid blue) and relative vortex length change
(dashed red) about a reconnection event (denoted by the red
dots) for a typical realization. The green area corresponds
to the interval defined by �

±(t)  �lin = 6⇠. (b) Relative
energy transferred to waves during the reconnection process.
The cyan zone denotes the allowed values from the matching
theory.

the theoretical estimation �L, rendered in cyan color in
Fig. 4(b), are bounded between two lines obtained setting
⇤ = 0 (dashed line) and |⇤| ! 1 (solid line). The GP
data are all distributed within these admissible values,
thus confirming the accuracy of the matching theory.

Remarkably, the estimation of Epulse explains in a
straightforward way the time asymmetry between the
rates of approach and separation reported in Fig. 2. In-
dependently on the value of the concavity parameter ⇤,
the energy of the sound pulse is only non-negative when
A+ � A�, meaning that unless energy is externally pro-
vided to the reconnecting vortices, it is energetically im-
possible to have a reconnection event where A+ < A�,
or equivalently, where �+ > ⇡/2.

Closing remarks. In this Letter we reported numer-
ical evidence of the irreversible dynamics of vortex re-
connections in a scalar quantum fluid, and explain its
origin thanks to a matching theory developed concur-
rently in [1]. Our results can be extended to more compli-
cated quantum fluids where non-local interactions and/or
higher order nonlinearities are included, like BECs with
dipolar interactions, cold Fermi gases, and superfluid liq-
uid 4He.

In quantum fluid experiments, the detailed study of
vortex reconnections is still in its infancy. In current
BECs made of dilute gases, reconnecting vortices are cre-
ated only in a non-reproducible way using fast temper-

ature quenches [26]; however new protocols have been
proposed to create vortices in a reproducible manner [27].
In such setups, once the reconnection plane is identified,
it should be feasible to measure the rates of approach
and separation and detecting directionality of the sound
pulse, using for instance Bragg spectroscopy [28]. In
superfluid liquid 4He experiments, vortex reconnections
have been detected so far only at relatively hight tem-
perature where the normal component is non-negligible
[29]. This latter may provide energy but also dissipate it
through mutual friction, hence measuring experimentally
the distribution of the rates of approach and separation
at di↵erent temperatures would be particularly desirable.
Finally, let us come back to the concept of irreversibil-

ity. In the realizations presented in this Letter, almost
all of the superfluid kinetic energy is initially stored in
the vortex-type excitations. This is likely to cause the
observed statistical asymmetry in the distribution of the
rates of approach and separation to be maximized. At
finite temperatures or in a turbulent tangle, fluctuations
can provide extra energy to reduce this asymmetry, per-
haps allowing also for �+ > ⇡/2, but the time-asymmetry
should in principle remains as an inherent mechanism al-
lowing the system to reach the equilibrium. From a fluid
dynamical point of view, let us to remark that vortex
reconnections are allowed and regular, in classical fluids,
due to the presence of viscosity, while in quantum fluids,
thanks to a dispersive term. Showing whether the result-
ing dynamics of these two di↵erent fluids are equivalent
or not, in the limit where their respective regularization
scale tends to zero, is an appealing open problem. Com-
paring the results presented in this Letter with a similar
study in Navier–Stokes or a carefully regularized Biot-
Savart model might provide some insights on the sponta-
neous stochasticity and the dissipative anomaly of turbu-
lent flows, two concepts closely related to irreversibility.
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‣ We quantitative explained 
the origin of the irreversible 
dynamics by showing that 
the energy of the sound 
pulse is only positive when 

 that is for 
 

A+ > A−

0 ≤ ϕ+ ≤ π/2



FUTURE WORKS

‣ Analyse the sound pulse, to know if it is 
a “superposition” of (quasi-)linear 
waves, or a full nonlinear structure 

‣ Work on a “more precise” 
asymptotic matching theory
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III. MOMENTUM AND ENERGY TRANSFERS DURING A RECONNECTION

As it has been observed in previous works [24, 29, 30] and clearly displayed in Fig.2, when a vortex reconnection
takes place in a quantum fluid, a sound pulse is excited. Energy and momentum are thus transferred from the
incompressible to the compressible degrees of freedom of the superfluid in an irreversible manner. The aim of this
section, and the main result of this work, is to develop an asymptotic matching theory that allows for quantifying
such energy and momentum exchanges.

In the GP model, the total energy (3) and linear momentum (4) are conserved during the reconnection process,
as they are integrals of motion. Well before a reconnection event, practically only the presence of vortex filaments
contribute to the invariants, whereas after reconnection, both filaments and compressible waves add up their con-
tributions to them. If one is able to estimate the contribution of the filaments, then the contribution of density
waves can be deduced using the conservation of the invariants. In the case of energy, such decomposition can be
easily done numerically by splitting the kinetic energy term into the incompressible and compressible parts [17]. Such
measurements were performed in [1] and will be reproduced below in our discussions.

Our analytical treatment of the problem is as follows. When the filaments are far from each other, i.e. �(t)±
� ⇠,

their dynamics of mainly driven by the Biot-Savart model. In that region we might use the vortex filament description
to evaluate their energy and momentum of the superfluid. On the other hand, when �

±(t) ⌧ ⇠, the dynamics
is governed by the linear regime given by the Schroedinger equation. Vortices then reconnect following the laws
described in the preceding section. We thus describe the reconnection matching, sketched in Fig.6, as follows. Before
reconnection, some Biot-Savart dynamics leads to the pre-reconnection input configuration R�

1,2 for the filaments
about the vortex reconnection point. The Biot-Savart description is assumed to be valid down to a distance �

� = �lin,
where �lin is of the order of few healing lengths. From there, the filaments are driven by the Schroedinger equation
allowing them to reconnect. After the reconnection, this linear regime is valid until the vortices separate up to
a distance �

+ = �lin. The linear evolution thus provides the output post-reconnection configuration R+
1,2 for the

filaments. From there onwards, the dynamics is again governed by the Biot-Savart model. Note that the linear regime

time

Biot-Savart model Schrödinger equation

input output

�
�(t) � ⇠
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FIG. 6. (Colour online) A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is driven by the
Schroedinger equation.

corresponds only to the dynamics inside the orange-greenish box in Fig. 6. We can thus consider the linear regime as
the regularization mechanism allowing vortex reconnections in the Biot-Savart model.

Summarizing, in order to compute the di↵erences before and after the reconnection in the incompressible energy
and momentum of the superfluid, we use the theoretical description R±

1,2 for the filaments given in Eqs. (27-30).
Namely, we use such parametrization when the distance is

�
� = �

+ = �lin & ⇠ , (36)

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime description may
be still valid at distances beyond the healing length ⇠ is justified by numerical evidence [25].
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FIG. 10. (Color online) Traveling pulse emitted during a reconnection with Ar = 1.67. (a) Density around the pulse as function
of time for di↵erent values of the distance z to the reconnection plane. (b) Same as (b), but as a function of the retarded
time. (c) Depth of the traveling pulse trough ⇢min at di↵erent values of z compared with the 1/z

2 decay law predicted form
an acoustic pulse emitted from a point source. The theoretical formula is obtained by imposing the 1/z

2 decay and matching
the measured value of ⇢min at z0 = 20⇠, the smallest value of z at which the pulse was measured. The speed of sound is c and
⌧ = ⇠/c.
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FIG. 11. (Colour online) Energy radiated during reconnections as a function of Ar = A
+

/A
� for di↵erent values of �lin.

Numerical data from GP simulations obtained in [1] is confronted to our theoretical prediction in Eq. (53). (a) �lin = 4⇠. (b)
�lin = 8⇠. (c) LogLog plot of energy as a function of Ar � 1 for di↵erent values of �lin.

We should also remark on the possible role played by the center-line helicity Hc during a reconnection event. As
first observed in [31], the evolution of Hc shows a sudden drop (but still being continuous) during a reconnection if the
initial linking number between the vortex filaments is non-zero. This is certainly the case analyzed in [1], where the
initial configuration of the filaments, an Hopf link, has linking number equal to 2. The temporal evolution of a Hopf
link, for a case with Ar = 3.5, is displayed Fig. 12.a, where the helicity drop is clearly visible. One might be tempted
to think that the sudden drop in the center-line helicity �Hc is related to the properties of the reconnecting filaments,
for example their parameter Ar. Figure 12.b shows that �Hc as a function of the parameter Ar. Numerical data
do not correlate as well as the energy and no clear trend is observed. We can however speculate that the center-line
helicity drop may influence the amplitude and polarisation of the Kelvin waves forming on the vortex filaments after
the reconnection process. This research proposal constitutes another interesting direction for future works.

In conclusion, our theoretical results help to understand not only how vortex reconnections take place in quantum
fluids, but also why they do occur. Albeit the GP model is time reversible, the vortex reconnection process presents
a time asymmetry so that the system can naturally transfer part of the (kinetic) incompressible energy into its
compressible counterpart. In some sense, this observed temporal asymmetry can be interpreted as consequence of the
system being in an out-of-equilibrium stage and reconnections being a fast route towards reaching thermal equilibrium.
It will be very interesting to study vortex reconnections at finite temperatures, where a thermal bath of Bogoliubov
modes is present, to see if whether this asymmetry is reduced or destroyed completely. Furthermore, the situation
can be di↵erent when open conditions, like external forcing and damping terms acting at di↵erent length scales, are
introduced. In a fully developed turbulent state, fluctuations could provide enough energy to allow reconnections with
Ar < 1, but one might still expect skew distributions towards Ar > 1, as dissipation of turbulent flows do not vanishes
in the limit of infinite Reynolds numbers because of the dissipative anomaly of turbulence [41]. This is undoubtedly,
another interesting direction of research for future studies.

‣ Look at the problem of reconnections in the Euler limit (regularity applied 
maths problem) by letting different regularisation scales (viscosity in 
classical fluid, dispersion in quantum fluids) tends to zero

‣ Assume thermal or turbulent fluctuations to find how the distribution of 
the rates  varies, for experimental applications in quantum fluids where 
thermal excitations are always present (statistical mechanics problem)

A±
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