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FLYING IN A SUPERFLUID: STARTING
FLOW PAST AN AIRFOIL

» Recap on classical theory of flight: 2D and 3D
» Moving obstacles in superfluids

» How an airfoil potential may affect the superfluid
flow



CLASSICAL THEORY OF FLIGHT

By Wright brothers - Library of Congress, Public Domain [Wikipedia]

> Inviscid theory to predict lift in stationary flow

» Viscous effects to explain the generation of lift and drag

effects
[D.J. Achenson, Elementary Fluid Dynamics, Oxford University Press, 1990]



CLASSICAL THEORY OF FLIGHT
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[M.Van Dyke, An Album of fluid Motion, 1982]

» The due to the positive angle of attack (or geometry) the fluid’s
speed is higher in the upper part of the airfoil (wing cross-section)

» The lift is a direct consequence of Bernoulli equation
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2D INVISCID THEORY FOR AN AIRFOIL

The two-dimensional flow resulting from the incompressible Euler
equation past an airfoil can be analytically solved using conformal mapping

[M.Van Dyke, An Album of fluid Motion, 1982]

> Complex velocity potential, solution of the
flow past a cylinder
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2D INVISCID THEORY FOR AN AIRFOIL

For a generic value of the terminal velocity, angle of attack, airfoil size
and circulation around the airfoil, the streamlines in stationary
conditions can be sketched as follows
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» Two stagnation points (zero speed) at the airfoil, whose positions
depend on the value of the circulation around the airfoil

» A divergence of the fluid’s speed at the trailing edge of the airfoil
due to the presence of a cusp



THE KUTTA-JOUKOWSKI CONDITION

For a generic value of the terminal velocity, angle of attack, airfoil size
and circulation around the airfoil, the streamlines in stationary
conditions can be sketched as follows
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The unphysical divergence of the fluid speed is cancelled by letting
one of the two stagnation points meeting the trailing edge. This
mathematically results in the Kutta—Joukowskl (KJ) condition
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ADDING VISCOUS EFFECTS AND 3D CASE

Viscous effects: (F=o)

» cause generation of the K| circulation
around the airfoil (forbidden in inviscid fluid
due to Helmoltz’s third theorem)

s
> responsible for drag forces (form drag and @ %}:}

skin drag)

» responsible for stall effect due to
detachment of boundary layer

3D case:

> Vortex tubes created at the tips
of the wings

Here not considered, only 2D!



FLYING IN A SUPERFLUID

» Can an accelerated airfoil acquire circulation?

» If so, what are the admissible values of the lift

for a given airfoil, angle of attack and terminal
velocity!?

» Does the airfoil experience any drag!?



oy h?
or  2m

1h

2
Viy—glyl w=V, py=0

It is a mean-field equation that turns out to model incredibly well
cold dilute Bose gases at very low temperature

It also model qualitatively well superfluid liquid Helium
In absence of the external potential, the ground-state is obtained

for |WGS| — \/poo

The healing length £ = \/hz/(2mgp0) is the only inherent length
scale of the system

The large scale perturbation of the ground-state are phonon-like
excitation of sound speed ¢ =/gp,/m




THE GROSS-PITAEVSKII MODEL
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Using Madelung transformation y = \/,5 exp(i¢) and defining density

and velocity as p = m|y|* and v = A/mV ¢ , respectively, then

1h

P V. (ow) =0
— . u) =
ot P

) -
ou 1 h2 Voa/p
— 4+ @-Vu=V —§p+—V+ \/_
ot m m 2m? \/P

» The GP models an inviscid, barotropic, and irrotational fluid

> The last term of the second equation, the quantum pressure,
becomes negligible at scales larger than the healing length £



THE GROSS-PITAEVSKII MODEL
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F— Vi —gly|y =V, =0

Y m w=8I1YIy extV

Using Madelung transformation y = \/,5 exp(i¢) and defining density

and velocity as p = m|y|* and v = A/mV ¢ , respectively, then
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> Vortices are topological defect of the wave-function’s argument




An external potential moving in a superfluid may cause the flow to
break the Landau’s critical velocity (sound speed in GP), and generate
excitations (travelling waves, solitons, vortices) and cause dissipation
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[Frisch et al., PRL 69, 1644 (1992)]



EXTERNAL POTENTIAL MOVING IN GP

An external potential moving in a superfluid may cause the flow to
break the Landau’s critical velocity (sound speed in GP), and generate
excitations (travelling waves, solitons, vortices) and cause dissipation
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[Winiecki & Adams, Europhys. Lett. 52,257-263 (2000)]
[Nore et al.,, PRL 84,2191 (2000)]



EXTERNAL POTENTIAL MOVING IN GP

Some dynamical effects are very similar to the classical viscous ones

VYon Karman vortex sheet Boundary layer

[Stagg et al., PRL 118, 135301 (2017)]

[Sasaki et al., PRL 104, 150404 (2010)]



A TYPICAL SIMULATION
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» The airfoil moves initially with constant acceleration until it
reaches a terminal velocity U_ = 0.29¢

» The airfoil’s length is L = 325& and angle of attack a = #/12
» Confining potential at the end of the computational box



EXPLORATION OF THE PARAMETERS SPACE

> We vary both the airfoil length and terminal velocity
» The airfoil shape (4 = 0.1) and angle of attack a = /12 are constant
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Left: number of vortices produced at the trailing edge.Vortices produced at the top are
highlighted with a polygon. Right: two simulation examples, the latter with the
detachment of the boundary layer causing a stall condition.

HOW TO PREDICT THE NUMBER OF VORTICES GENERATED?



ASSUME INVISCID INCOMPRESSIBLE THEORY

@ Gircto plane. LA IV plans
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The magnitude of the velocity field around the trailing edge,
Taylor-expanded about the Kutta—]oukowski condition results in

2

. 1L, I L
4 r FKJ r




COMPRESSIBILITY CONDITION (NO QUANTUM PRESSURE)
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The compressibility condition say that sound waves (and other
excitations like vortices) occurs when the flow speed satisfies
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VORTEX GENERATION BY COMPRESSIBLE EFFECTS

Introducing a dispersive boundary layer with thickness r = C¢

where I" = nx, withn e N
and I, is the KJ condition

best fit gives C ~ 0.55

Number of vortices generated
depending on the speed and
length parameters. The curves
indicate the phenomenological
prediction. The white area indicate
the stalling behaviour.
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ABOUT LIFT AND DRAG

Lift and drag is obtained from the stress-energy tensor
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Left: video showing the sound emission during the vortex nucleation at the trailing
edge. Right: rescaled lift (dashed) and drag (solid) versus time computed for
different contours around the airfoil.



ABOUT LIFT AND DRAG (SOUND FILTERED)

» filter the acoustic component in the velocity field
» use density field prescribed by the stationary Bernoulli equation
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Lift appears now quantised and drag becomes
nearly zero after the vortex nucleation




CONCLUSIONS
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» An airfoil moving in a superfluid can generate vortices at the trailing
edge by breaking the Landau’s critical speed

» To preserve the total circulation, the airfoil acquires a non-zero
circulation

» This process is unsteady and generates sound

> When sound is removed (or steady regime is achieved) the airfoil
experiences a quantised lift and no drag)

> If the terminal velocity of the airfoil is too high then a detachment of

the boundary layer occurs (stall) and the steady regime cannot be
achieved
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