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OUTLINE OF THE TALK

‣ Brief introduction to the Gross-Pitaevskii 
equation that models a Bose-Einstein condensate, an 
example of a quantum fluid

‣ Discuss the main idea of the (weak) wave 
turbulence theory and its application to the 
Gross-Piteavskii model

‣ Simulations of out-of-equilibrium 3D and 2D systems, 
focussing in particular on the mechanisms carrying 
energy towards the small scales of the system, that is 
building a direct energy cascade

‣ Bogoliubov turbulence



THE GROSS-PITAEVSKII MODEL

Under a suitable dimensional rescaling and assuming for simplicity no 
external confinement one obtains the non-dimensional GP equation 

iℏ
∂ψ
∂t

+
ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0

i∂tψ + ∇2ψ − |ψ |2 ψ = 0

‣ Length scales are measured in units of the healing length   

‣ It conserves particles (number of bosons) and energy, that is

‣ Because it is an energy preserving dispersive nonlinear PDE (cubic 
nonlinear Schroedinger equation), it admits the wave turbulence (WT) 
theory approach

N = ∫ |ψ |2 dV and H = ∫ |∇ψ |2 +
1
2

|ψ |4 dV

ξ =
ℏ2

2mgρ∞



THE (WEAK) WAVE TURBULENCE THEORY APPROACH

{k1 ± k2 ± … ± kn = 0
ω(k1) ± ω(k2) ± … ± ω(kn) = 0

The wave turbulence theory can be thought as a statistical mechanics 
approach to waves. It may be applied to any weakly nonlinear dispersive 
system like waves in optics, plasma, ocean, Bose-Einstein condensates, … 

[Wave Turbulence, Nazarenko (2011)]

The efficient energy transfer in the system is mediated by only the 
resonant n-wave interaction processes satisfying



THE (WEAK) WAVE TURBULENCE THEORY APPROACH

In Fourier space, GP results in   ( )ψ̃k = ∫ ψ exp [ik ⋅ x] dx

The WT introduces a statistical closure when nonlinearity is weak
‣ Statistical average over the highly fluctuating phase 
‣ Random phase approximation so higher order correlators are decomposed into lower ones 

(Wick decomposition)

‣ Predicts a kinetic equation to model the evolution of the spectrum 
‣ WT theory for 2d/3d BECs

[Nazarenko & Onorato, Physica D 219, 1 (2006); Numasato et al., PRA 81, 063630 (2010);
Nowak et al., PRA 85, 043627 (2012); Fujimoto & Tsubota, PRA 91, 053620 (2015)]

ψ̃i = | ψ̃i |eıθi

n(k) ∝ | ψ̃k |2

i∂tψ̃k1
− ω(k1) ψ̃k2

= ∫ ψ̃*k2
ψ̃k3

ψ̃k4
δ(k1 + k2 − k3 − k4) dk234 , here ω(k) = |k |2

⟨ψ̃i⟩ = ⟨ | ψ̃i |eıθi⟩ = 0
⟨ψ̃iψ̂j⟩ = ⟨ | ψ̃i | | ψ̃j |eı(θi+θj)⟩ = 0

⟨ψ̃iψ̃*j ⟩ = ⟨ | ψ̃i | | ψ̃*j |eı(θi−θj)⟩ = n(ki) δ(ki − kj)
. . .

⟨ψ̃iψ̃jψ̃*k ψ̃*l ⟩ = n(ki) n(kj)[δ(ki − kk) δ(kj − kl) + δ(ki − kl) δ(kj − kk)] + Ci, j,k,l



DE BROGLIE LIMIT, 4-WAVE KINETIC EQUATION

De Broglie limit is the limit where no modes are macroscopically 
occupied (no strong condensate), 4-wave kinetic equation 

∂n1

∂t
= 4π∫ n1n2n3n4 ( 1

n1
+

1
n2

−
1
n3

−
1
n4 ) δ(k1 + k2 − k3 − k4)

× δ(ω1 + ω2 − ω3 − ω4) dk234, ωi = |ki |
2

‣ Only resonant interactions contribute

‣ Equilibrium is the Rayleigh-Jeans distribution

‣ Existence of other steady state distributions in the form of power-
laws, called Kolmogorov-Zakharov solutions, carrying a 
constant flux of conserved quantities through scales

{k1 + k2 = k3 + k4
ω1 + ω2 = ω3 + ω4

nRJ(k) =
T

μ + ω(k)

Schematic of resonant 
4-wave interactions



KOLMOGOROV-ZAKHAROV CASCADE SOLUTIONS (IN 3D)

Assuming the system is isotropic

n1D(k) = ∫ n(k) dΩ ∝ n(k) kd−1 given k = |k |

Sketch of the process

‣ Direct energy cascade

‣ Inverse particles cascade

n1D(k) ∝ k−1

n1D(k) ∝ k−1/3



KOLMOGOROV-ZAKHAROV CASCADE SOLUTIONS (IN 3D)

n1D(k) ∝ k−1

Sketch of the process
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[D. P., S. Nazarenko, and M. Onorato, PRA 80, 051603(R) (2009)]



BOGOLIUBOV LIMIT, 3-WAVE KINETIC EQUATION

The WT theory can be also applied in another weakly nonlinear limit, called 
the Bogoliubov limit, where the system is described by a strong 
condensate with infinitesimal fluctuations

The dispersion relation for the 
perturbations is

and 3-wave interactions

ω(k) = ± |k | |k | + 2ρ∞

∂n1

∂t
= ∫ (ℛ1

2,3 − ℛ3
2,1 − ℛ3

1,2) dk23 , where

ℛ3
1,2 = Vk3

k1,k2

2
δ(ω1 + ω2 − ω3) δ(k1 + k2 − k3) (n1n2 − n2n3 − n3n1)

‣ In the limit of large scale fluctuations much larger than the healing length, the 
direct energy cascade results in 

[Fujimoto & Tsubota, PRA 91, 053620 (2015)]

‣ Not completely clear how to derive the kinetic equation,  as the dispersion 
relation is linear in ks and the resonant manifold is trivial

n(ψ)
1D ∝ k−7/2



OUT-OF-EQUILIBRIUM STATES IN TWO-DIMENSIONAL GP

The interest is not only theoretical but also motivated by recent 
(3D) experiments in BECs

7 2  |  N A T U R E  |  V O L  5 3 9  |  3  N O V E M B E R  2 0 1 6

LETTER
doi:10.1038/nature20114

Emergence of a turbulent cascade in a quantum gas
Nir Navon1, Alexander L. Gaunt1, Robert P. Smith1 & Zoran Hadzibabic1

A central concept in the modern understanding of turbulence is 
the existence of cascades of excitations from large to small length 
scales, or vice versa. This concept was introduced in 1941 by 
Kolmogorov and Obukhov1,2, and such cascades have since been 
observed in various systems, including interplanetary plasmas3, 
supernovae4, ocean waves5 and financial markets6. Despite much 
progress, a quantitative understanding of turbulence remains a 
challenge, owing to the interplay between many length scales that 
makes theoretical simulations of realistic experimental conditions 
difficult. Here we observe the emergence of a turbulent cascade 
in a weakly interacting homogeneous Bose gas—a quantum fluid 
that can be theoretically described on all relevant length scales. 
We prepare a Bose–Einstein condensate in an optical box7, drive 
it out of equilibrium with an oscillating force that pumps energy 
into the system at the largest length scale, study its nonlinear 
response to the periodic drive, and observe a gradual development 
of a cascade characterized by an isotropic power-law distribution 
in momentum space. We numerically model our experiments using 
the Gross–Pitaevskii equation and find excellent agreement with 
the measurements. Our experiments establish the uniform Bose 
gas as a promising new medium for investigating many aspects 
of turbulence, including the interplay between vortex and wave 
turbulence, and the relative importance of quantum and classical 
effects.

Compared to classical fluids, superfluids present fascinating peculiar-
ities such as irrotational and frictionless flow, which raises fundamental  
questions about the character of turbulent cascades8,9. Numerous 
experiments on quantum-fluid turbulence have been performed with 
liquid helium, exploring both vortex8,10–12 and wave turbulence13–15, 
but their theoretical understanding is hampered by the strong interac-
tions that make first-principles descriptions intractable. The situation 
is a priori simpler for an ultracold, weakly interacting Bose gas, which is 
often accurately described by the Gross–Pitaevskii equation (GPE) for 
the complex-valued matter field ψ(r, t) (where r =  (x, y, z) is the spatial 
position and t is time; ref. 16). This equation is widely used to model 
turbulence in quantum fluids17–21, but the numerical results have been 
lacking experimental validation. Experimentally, qualitative evidence 
for turbulence has been seen in quantum gases22–25, but quantitative 
comparisons with theory were hindered by the inhomogeneous density 
that results from harmonic trapping. Here we eliminate this problem 
by studying turbulence in a homogeneous quantum gas.

The basic idea of our experiment is outlined in Fig. 1. We prepare a 
quasi-pure Bose–Einstein condensate (BEC) of 87Rb atoms in a cylin-
drical optical box7, and drive it out of equilibrium with a spatially uni-
form, oscillating force that primarily couples to the lowest, dipole-like 
axial mode. Our box has length L =  27(1) µ m and radius R =  16(1) µ m 
(here and elsewhere, errors represent 1σ uncertainties). For our typical  
atom number N ≈  105, the initial, equilibrium BEC has a chemical 
potential µ/kB ≈  2 nK (where kB is the Boltzmann constant), interaction 
energy per particle Eint/kB ≈  1 nK and negligible kinetic energy, while 
the critical temperature for Bose–Einstein condensation is Tc ≈  50 nK. 
The driving force is provided by a magnetic field gradient that creates 
a potential U(r) =  ∆Uz/L, where the coordinate z is along the axis of 

the box (Fig. 1a). The natural scale for ∆ U, separating weak and strong 
drives, is set by µ.

Numerical simulations in Fig. 1a show the microscopic behaviour 
of a shaken trapped gas, which gradually changes from simple uni-
directional sloshing along z to an omnidirectional turbulent flow; in 
addition to the wave-like motion, we observe vortex lines (depicted in 
red), which are detected by computing the local circulation. (Snapshots 
of the turbulent flow do not obey the cylindrical symmetry of the 
(time-dependent) Hamiltonian. In real physical systems, any such 
symmetry is always broken by imperfections; in our simulations the 
symmetry breaking is provided by the position of the numerical grid.) 
Here the shaking amplitude is ∆ U/µ =  1 and the longest shaking time 
ts =  2 s corresponds to 16 driving periods.

Experimentally, we probe the global properties of the gas by releasing 
it from the trap and imaging it along a radial direction (x) after a long 

1Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
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Figure 1 | From unidirectional sloshing to isotropic turbulence.  
a, Gross–Pitaevskii simulations of a shaken, box-trapped Bose gas. The 
blue shading indicates the gas density; the red lines indicate vortices. 
b–d, Experimental absorption images taken along x after 100 ms of TOF 
expansion, with N ≈  8 ×  104 atoms (upper panels), and the corresponding 
angular distributions p(θ), averaged over 20 images taken under identical 
conditions (lower panels). b, Initial BEC; c, after shaking for 2 s at 8 Hz 
with amplitude ∆ U/µ ≈  1.2; and d, after the turbulent cloud was allowed 
to relax for 1.5 s. The dashed circle in c corresponds to an expansion 
energy of kBTc/2. In the lower panels, the red lines correspond to the 
diamond-like and isotropic distributions depicted in the insets.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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observably lower than ωres. We empirically find that an upper bound 
on ωres (dashed green line in Fig. 2c) is obtained by calculating ωHD for 
an effective BEC volume that excludes the region within ξ of the trap 
walls. Finally, we linearize the GPE around the ground-state BEC solu-
tion for our box trap and numerically solve the resultant Bogoliubov 
equations (see Methods). These solutions are shown as the grey shaded 
area in Fig. 2c, which accounts for the experimental uncertainty in the 
box size. We find excellent agreement with the data, without any adjust-
able parameters.

In Fig. 2d, e we show measurements for driven oscillations with 
different drive strengths. Increasing ∆ U shifts and broadens the res-
onance, and both trends are reproduced by our GPE simulations (red 
bands in Fig. 2e); for very large ∆ U the classical-field GPE approxi-
mation may gradually break down. The line broadening, seen for any 
non-zero ∆ U, indicates nonlinear coupling to other modes, which 
provides the route for the transfer of excitations into other directions 
and a direct cascade.

In the inset of Fig. 2e we plot the anisotropy of the TOF expansion 
∫ θ θ= / − / πA p(1 2) ( ) 1 (2 ) d   (see Methods) for 4 s of resonant driving.  

For ∆ U ≳ 0.8µ we observe the isotropic expansion (A ≈  0) that quali-
tatively signals turbulence. A key quantitative expectation for an iso-
tropic turbulent cascade is the emergence of a steady-state power-law 
momentum distribution: n(k) ∝  k−γ, where γ is a constant28. Owing to 
the line-of-sight integration in absorption imaging, this corresponds 
to an in-plane distribution ∝ γ− −!n k k( ) ( 1).

In Fig. 3 we present our study of !n k( ) observed after a resonant drive. 
An isotropic expansion (from an anisotropic container) necessarily 
means that the in-trap kinetic energy dominates over the interaction 
energy, which in turn means that the TOF expansion can provide an 
accurate measure of the in-trap momentum distribution. Specifically, 
defining kr ≡  mr/(ħtTOF), where r is distance from the centre of mass 
in TOF, !n k( )r  should closely correspond to the in-trap !n k( ) (see 
Methods, Extended Data Fig. 1). However, this correspondence does 
not hold for very low momenta (kr ≲ klow ≡  mL/(ħtTOF)), owing to the 
convolution of the TOF distribution with the initial (in-trap) cloud 
shape. The highest momentum in our clouds ħ≡ /k mU( 2 )high 0  is set 
by the trap depth U0 ≈  kB ×  60 nK, which corresponds to an energy sink.

In Fig. 3a we show an example of !n k( )r , for ∆ U/µ =  1.1(1) and ts =  4 s 
(black line in the main panel and lower inset), obtained by averaging 

over 20 images and also performing an azimuthal average. Vertical red 
lines indicate the klow and khigh boundaries. Away from these bounda-
ries we observe a power-law behaviour, with γ ≈  3.5. This behaviour is 
even more visually evident in the lower inset, in which we plot 

γ − !k n k( )r r
10 , with γ0 ≡  3.5. In the top inset in Fig. 3a we show the result 

of GPE simulations (for ∆ U/µ =  1), which also exhibit a power-law 
distribution. Moreover, the experiment and simulations are consistent 
with the same value of γ.

In Fig. 3b we present the evolution of !n k( )r  towards the turbulent 
steady state, as the shaking time is increased. In the inset we show (on 
a linear scale) the total atom populations in the low-k ‘source’ region 
kr <  km and in the range km <  kr <  kM, where the power-law distribution 
is established in steady state (km and kM are boundaries defined in the 
lower inset of Fig. 3a). Initially there is a net transfer of population from 
the source to the cascade region. The population growth in the cascade 
region means that the population flux through this k-space range is not 
constant at these early times. However, once the steady state is 
 established, the population in the cascade k range saturates at a constant 
value, while the source is still slowly depleted. This is indeed what is 
expected for a direct cascade, in which a constant, k-independent 
 population flux passes from the source, through the cascade range, to 
the high-k sink; formally, this population flux, for a given energy flux, 
should tend to zero as the sink is moved towards infinite energy28. (For 
a non-infinite-energy sink, one strictly speaking has a quasi-steady 
state, because at very long times the source would be too depleted to 
support a constant-flux cascade.)

We further cross-validate our experiments and first-principles cal-
culations by fitting the cascade exponent γ in the range km <  kr <  kM. 
In Fig. 3c we show that, for ∆ U/µ ≈  1, the experiment and simula-
tions exhibit very similar evolution with the shaking time, and reach 
a steady-state value of γ after ts ≈  2 s. In Fig. 3d we plot the measured 
and simulated γ values versus the shaking amplitude for fixed ts =  4 s. 
Here we see that the steady-state value of γ is essentially independent 
of ∆ U, reinforcing the robustness of our conclusions (for small ∆ U 
the steady state is not reached for ts =  4 s; see also the inset of Fig. 2e).

We lastly discuss our findings in the context of previous theoretical 
work. The γ we observe in both the experiment and simulations is close 
to one of the scarce analytical predictions—the Kolmogorov–Zakharov 
direct-cascade exponent γ =  3, for the weak-wave turbulence of a 
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Figure 3 | Development of a turbulent cascade. a, Momentum 
distribution of the turbulent gas (solid black line), for N =  7(1) ×  104,  
∆ U/µ =  1.1(1), ts =  4 s, ω/(2π ) =  9 Hz and tTOF =  100 ms. The vertical red 
lines indicate the momentum resolution klow (left) and the energy sink at 
khigh (right); the dashed blue line is a guide to the eye, offset from the data 
for clarity. Lower inset, compensated spectrum γ − !k n k( )r r10  with γ0 =  3.5 (in 
log–log scale); km and kM define the fitting ranges used in b–d. Upper 
inset, steady-state distribution from GPE simulations, for ∆ U/µ =  1.  
b, Dynamics of !n k( )r  towards the steady state, for ∆ U/µ  =  1.1(1). Inset, 

total atom population for kr <  km (the low-k ‘source’; green), and for 
km <  kr <  kM (in the cascade region; yellow). At long times (solid lines) 
Ṅsource =  −3.6(1.5) atoms ms−1, whereas Ṅcascade =  − 0.2(3) atoms ms−1 is 
consistent with zero. All populations are corrected for losses due to the 
collisions with the background gas in the vacuum chamber (see Methods). 
c, Exponent γ versus shaking time in experiment (blue, ∆ U/µ =  1.1(1)) 
and simulations (red, ∆ U/µ =  1). d, Exponent γ versus shaking amplitude 
in experiment (blue) and simulations (red), for ts =  4 s.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

[Navon et al., Nature 532, 7627 (2016); 
Navon et al., Science 366, 382 (2019)]

Synthetic dissipation and cascade fluxes in a turbulent quantum gas

Nir Navon1,2⇤, Christoph Eigen1, Jinyi Zhang1, Raphael Lopes1†, Alexander L. Gaunt1,3,
Kazuya Fujimoto4⇤, Makoto Tsubota5,6, Robert P. Smith1,7 and Zoran Hadzibabic1

1 Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2 Department of Physics, Yale University, New Haven, Connecticut 06520, USA
3 Microsoft Research, 21 Station Road, Cambridge CB1 2FB, United Kingdom
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Scale-invariant fluxes are the defining property of turbulent cascades, but their direct measurement is a noto-
rious problem. Here we perform such a measurement for a direct energy cascade in a turbulent quantum gas.
Using a time-periodic force, we inject energy at a large lengthscale and generate a cascade in a uniformly-
trapped Bose gas. The adjustable trap depth provides a high-momentum cutoff kD, which realises a synthetic
dissipation scale. This gives us direct access to the particle flux across a momentum shell of radius kD, and the
tunability of kD allows for a clear demonstration of the zeroth law of turbulence: we observe that for fixed forc-
ing the particle flux vanishes as k�2

D in the dissipationless limit kD ! 1, while the energy flux is independent
of kD. Moreover, our time-resolved measurements give unique access to the pre-steady-state dynamics, when
the cascade front propagates in momentum space.

The discovery in 1941 by Kolmogorov and Obukhov of a
universal law describing the transfer of energy from large to
small lengthscales in turbulent flows was a conceptual break-
through [1, 2]. Despite their complex spatiotemporal dynam-
ics, turbulent flows often obey a simple generic picture: the
energy injected into the system at a large lengthscale flows lo-
cally in Fourier space, through lengthscales in the so-called in-
ertial range where no dissipation occurs, until it is dissipated at
some small lengthscale. In Fig. 1A, we depict such turbulent-
cascade dynamics for a compressible field in real space. Here,
a field initially at rest is at times t > 0 continuously forced
at a large lengthscale 1/kF, and the excitations propagate to
smaller lengthscales due to nonlinear interactions. Once the
excitations first reach the dissipation scale 1/kD, at time td,
the field fluctuates on all lengthscales from 1/kF to 1/kD. If
a steady state is established within the momentum range kF
to kD, from thereon energy is dissipated at kD at the same
rate at which it is injected at kF. In such a steady state, the
momentum-space distributions of quantities such as the en-
ergy or wave amplitude, are generically scale-free power laws.

Many quantitative theoretical predictions about turbulence
are based on taking the mathematical limits kF ! 0 and
kD ! 1 [3]. Such formal treatments lead to predictions that
are elegant, but often also counter-intuitive. A key predic-
tion of this kind is that for kD ! 1 the steady-state cascade
corresponds to a scale-invariant (k-independent) energy flux
through momentum space, but no particle flux [4].

Experimentally, the steady-state power-law spectra of var-
ious quantities have been extensively studied [5–9], while
the equally fundamental cascade fluxes are harder to mea-
sure [10–13]. Recently, ultracold atomic gases have emerged
as a novel platform for studies of turbulence [9, 14–22], which

⇤To whom correspondence should be addressed: nir.navon@yale.edu,
fujimoto@cat.phys.s.u-tokyo.ac.jp.
†Present address: Laboratoire Kastler Brossel, Collège de France, CNRS,
ENS-PSL University, UPMC-Sorbonne Université, 11 Place Marcelin Berth-
elot, F-75005 Paris, France

offers new experimental possibilities. Here, we use an atomic
gas to directly measure cascade fluxes in a turbulent system.
Moreover, our dissipation scale is tuneable, which allows us
to explore how the fluxes depend on kD, and to reconcile
the experimental observations with the formal predictions for
kD ! 1. Our system also allows a time-resolved study of
the initial stage of turbulence, when steady state is not yet es-
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FIG. 1: Turbulent cascade in a box-trapped quantum gas. (A)
Cartoon of real-space dynamics of a turbulent wave. Energy is in-
jected by forcing the matter-wave field at a large lengthscale, 1/kF,
and propagates to smaller scales due to nonlinear interactions. A
steady state can be established once the excitations first reach the
small dissipation lengthscale, 1/kD, at a time td. (B) Sketch of the
experimental setting. The atoms (blue) are trapped in a finite-depth
potential formed by laser barriers (green) in the shape of a cylindrical
box. The shaking force is applied along x̂. (C) In momentum space,
the dissipation scale kD is set by the trap depth; when excitations
propagate to kD, dissipation occurs in the form of particle loss.
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THE KICKED-ROTOR TWO-DIMENSIONAL GP

We use the forced-dissipated 2D GP model

i∂tψ + ∇2ψ − |ψ |2 ψ = Γ̂f ψ + Γ̂d ψ

The forcing operator represent a kick-rotor in the form
[Vermersch et al., arXiv:1410.2587; Garreu, private communication]

‣                            are random variables uniformly distributed 
which shift the forcing at each   th kick 

‣ Each kick is given after a period 

Γ̂f = K′ ∑
n∈ℕ

[cos(k⋆x − ϕx,n) + cos(k⋆y − ϕy,n)] δ(t − n T )

ϕx,n, ϕy,n ∈ [0,2π)
n

T

The dissipative operator                       is a standard hyper-viscosity 
at small scales, it mimics a synthetic dissipation at small scales

Γ̂d = iν (∇2)3



DENSITY EVOLUTION, EXCITING THE 8TH MODE

Evolution of the density field  in time. Here the system is forced at the 8th 
harmonic every . The ratio system size to healing length is . 

ρ = |ψ |2

T ≃ 0.9 ξ/c L /ξ = 256



SPECTRUM EVOLUTION, EXCITING THE 8TH MODE

Evolution of the wave-action spectrum in time. Here the system is forced at the 8th 
harmonic every . The ratio system size to healing length is . T ≃ 0.9 ξ/c L /ξ = 256



PHONON-INTERACTIONS AND CASCADE FORMATION
The dynamics has different regimes:
‣ discrete phonon-phonon interaction regime takes place: the energy is 

slowly transferred to small scales
‣ when the healing length/or the dissipative scales are populated, the 

phonons are able to interact with the free particle-like excitations
‣ the energy finally spreads over all the accessible modes of the system 

(decay from quasi-solitons to dipoles)

‣ a power-law with 
exponent comparable 
with the one predicted 
by the WT theory is 
observed in the wave-
action spectrum 

n(ψ)
1D ∝ k−7/2



ROBUSTNESS OF THE WT BOGOLIUBOV CASCADE

‣ In the statistically steady state 
the linear energy density is two 
order of magnitude smaller 
compared to the nonlinear one, 
so the Bogoliubov regime should 
still be valid

‣ For different forcing 
amplitudes the spectra are 
close to the WT prediction, 
except when the amplitude 
becomes very large and the 
spectrum flattens a bit



CONCLUSIONS

‣ This system shows an interesting interplay between discrete phonon 
wave-interactions and denser wave turbulence

‣ Phonons spectra are not initially captured by the WT theory
‣ Dispersive free-particle excitations trigger the re-distribution of energy 

towards all the accessible modes of the system
‣ Finally a WT cascade seems to take place 

‣ This system could in principle 
be accurately realised in two-
dimensional BEC experiments

‣ What happens when non-local 
interactions are considered? 
Helium?

THANKS FOR YOUR ATTENTION!


