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FLYING IN A SUPERFLUID

‣ Recap on classical theory of flight: 2D and 3D
‣ Moving obstacles in superfluids
‣ How an airfoil obstacle/potential may affect the 

superfluid flow
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CLASSICAL THEORY OF FLIGHT

‣ Inviscid theory to predict lift in stationary flow
‣ Viscous effects to explain the generation of lift and drag 

effects
[D.J. Achenson, Elementary Fluid Dynamics, Oxford University Press, 1990]

By Wright brothers - Library of Congress, Public Domain [Wikipedia]



CLASSICAL THEORY OF FLIGHT

‣ The due to the positive angle of attack (or geometry) the fluid’s 
speed is higher in the upper part of the airfoil (wing cross-section)

‣ The lift is a direct consequence of Bernoulli equation

[M. Van Dyke, An Album of fluid Motion, 1982]

1
2 |v |2 + p

ρ
= const.



2D INVISCID THEORY FOR AN AIRFOIL

The two-dimensional flow resulting from the incompressible Euler 
equation past an airfoil can be analytically solved using conformal mapping 

→ Z(z) →
Z(z) = z + a2

z

dw
dz

= U∞ (1 − a2

z2 ) − iΓ
2πz

‣ Complex velocity potential, solution of the 
flow past a cylinder

‣ Joukowski map, example mapping a 
circle onto an airfoil

here λ = − 0.1, a = 1

[M. Van Dyke, An Album of fluid Motion, 1982]



2D INVISCID THEORY FOR AN AIRFOIL

For a generic value of the terminal velocity, angle of attack, airfoil size 
and circulation around the airfoil, the streamlines in stationary 
conditions can be sketched as follows

‣ Two stagnation points (zero speed) at the airfoil, whose positions 
depend on the value of the circulation around the airfoil

‣ A divergence of the fluid’s speed at the trailing edge of the airfoil 
due to the presence of a cusp



THE KUTTA-JOUKOWSKI CONDITION

For a generic value of the terminal velocity, angle of attack, airfoil size 
and circulation around the airfoil, the streamlines in stationary 
conditions can be sketched as follows

The unphysical divergence of the fluid speed is cancelled by letting 
one of the two stagnation points meeting the trailing edge. This 
mathematically results in the Kutta-Joukowski (KJ) condition

ΓKJ = 4πU∞(a + λ) sin α



ADDING VISCOUS EFFECTS AND 3D CASE

Viscous effects:
‣ cause generation of the KJ circulation 

around the airfoil (forbidden in inviscid fluid 
due to Helmoltz’s third theorem)

‣ responsible for drag forces (form drag and 
skin drag)

‣ responsible for stall effect due to 
detachment of boundary layer

3D case:
‣ Vortex tubes created at the tips 

of the wings

Here not considered, only 2D!



FLYING IN A SUPERFLUID 

(A superfluid is a fluid where viscosity is identically zero, like a 
superconductor is a material where electrical resistance is zero.)

‣ Can an accelerated airfoil acquire circulation?
‣ If so, what are the admissible values of the lift 

for a given airfoil, angle of attack and terminal 
velocity? 

‣ Does the airfoil experience any drag?



THE GROSS-PITAEVSKII MODEL

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0

‣ It is a mean-field equation that can be formally derived to model 
dilute Bose gases in the limit of zero temperature

‣ It also model qualitatively well other superfluids like liquid Helium 
below the -point

‣ This model is nothing but a nonlinear Schroedinger equation, 
where  is a complex function describing the order 
parameter of the system

‣  is the mass of each boson,  is the reduced Planck’s constant,  
weight the effective binary collisions between the bosons,  is 
some external potential

λ

ψ(r, t)

m ℏ g
Vext



THE GROSS-PITAEVSKII MODEL

Using Madelung transformation                          and defining density 
and velocity as                   and                     , respectively, then                   

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0

∂u
∂t

+ (u ⋅ ∇)u = ∇ − g
m

ρ + 1
m

Vext + ℏ2

2m2

∇2 ρ

ρ

ψ = ρ exp(ıϕ)
ρ = m |ψ |2 v = ℏ/m∇ϕ

‣ The GP models an inviscid, barotropic, and irrotational fluid
‣ The last term of the second equation, the quantum pressure, 

becomes negligible at scales larger than the healing length ξ

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0



THE GROSS-PITAEVSKII MODEL

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0

‣ In absence of the external potential, the lowest energy state 
(ground-state) is the uniform state , where  is 

the bulk density of the fluid

|ψGS | = ρ∞ ρ∞

‣ The healing length 

 is the only 

inherent length scale of the system

ξ = ℏ2/(2mgρ∞)
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‣ The infinitesimal perturbations of 

the ground-state are at large scale 
phonon-like excitations having speed 
of sound c = gρ∞/m



EXTERNAL POTENTIAL CYLINDER MOVING IN GP 

An external potential moving in a superfluid may cause the flow to 
break the Landau’s critical velocity (sound speed in GP), to generate 
excitations eventually causing dissipation

[Frisch et al., PRL 69, 1644 (1992)]

2d cylinder



THE GROSS-PITAEVSKII MODEL

Using Madelung transformation                          and defining density 
and velocity as                   and                     , respectively, then                   

ψ = ρ exp(ıϕ)
ρ = m |ψ |2 v = ℏ/m∇ϕ

‣ Vortices are topological defect of the wave-function’s argument

‣ Each vortex has circulation Γ = ∮ v ⋅ dl = n
ℏ
m

Δϕ = nκ

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0
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EXTERNAL POTENTIAL MOVING IN GP 

An external potential moving in a superfluid may cause the flow to 
break the Landau’s critical velocity (sound speed in GP), to generate 
excitations eventually causing dissipation

[Winiecki & Adams, Europhys. Lett. 52, 257-263 (2000)]
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Fig. 2 – Sequence of surface contour plots of the fluid density for (a) F = 2 and (b) F = 4. The
motion is from left to right, and the real space deflection due to the attraction of the vortex core is
indicated by the transverse position. The momentum (or time) of each frame is indicated by a dot in
fig. 1(b) and (c), except for the last frame in (a), where P = 1562. Note that after detachment, (b),
the ring size remains constant and the object and ring move at different velocities.

When the vortex core begins to separate from the object boundary, the encircling ring
configuration, corresponding to the stationary solution (2), becomes unstable with respect to
transverse motion, and stochastic fluctuations induce a transition to a pinned ring solution
(3), where the object is bound within the vortex core as in frame 4 of fig. 2(a). In our
simulations, defining the external force, F , at a slight angle to the numerical grid axis is
sufficient to induce the transition. On moving into the core, the object acquires a transverse
velocity thereby deflecting its trajectory (fig. 2). The deflection angle is a few degrees, so this
effect could be observable. If the ring detaches, a second ring forms and the object is pulled
back in the opposite direction. Consequently, vortices are emitted on alternating sides of the
object, similar to the vortex shedding behaviour observed in classical fluids.

The jump into the core also leads to the excitation of oscillatory modes of the vortex
ring fig. 2(a). One mode of oscillation dominates [12] and the frequency is independent of
the applied force. As the fluid is compressible, an accelerating object creates sound waves
which damp the motion. This damping is apparent in the oscillations of the object velocity in
fig. 1(a) inset. If the applied force is maintained the vortex radius continues to increase and
eventually the motion becomes indistinguishable from that of a free vortex ring, indicated by
the dotted line in fig. 1(a).

From fig. 1(a), it follows that excluding the ring excitations, the motion closely follows
the time-independent solutions, therefore these solutions may be used to predict the motion
of more complicated objects. To test whether a spherical object favours the encircling vortex
ring configuration, we performed calculations on a sphere (R = 3.3) with a hemispherical
surface bump (R = 1.5). The largest effect occurs when the bump lies in the equatorial plane.
In this case, the critical velocity is reduced from 0.68 to 0.65, and the vortex ring emerges
asymmetrically with its axis pulled towards the bump. However, the initial ring radius is still
similar to the no bump case. Subsequently, the object or ring rotates such that the vortex
core is pinned to the bump.
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TABLE I. General characteristics of all runs. The horizon-
tal periodicity lengths are Lx!D ! 2.4

p
2 p and Ly!D !

1.2
p

2 p. The adimensional drag coefficient Cx is indicated
when vortex stretching takes place (NS: no stretching), except
for run 6 [see text below Eq. (7)].

Run M DM tendc!j j!D Lz!D Cx

1 0.30 7% 300
p

2 0.05 0.8
p

2 p 1.0

2 0.35 9% 250
p

2 0.05 2.4
p

2 p 0.5

3 0.22 9% 250
p

2 0.04 0.8
p

2 p 0.4

4 0.25 4% 625
p

2 0.04 0.8
p

2 p 0.9

5 0.25 12% 225
p

2 0.033 0.8
p

2 p 0.6

6 0.26 23% 300
p

2 0.025 0.4
p

2 p *

7 0.35 9% 50
p

2 0.1 0.8
p

2 p NS

8 0.30 7% 150
p

2 0.067 0.8
p

2 p NS

9 0.37 0% 75
p

2 0.067 0.8
p

2 p NS

10 0.25 4% 150
p

2 0.05 0.8
p

2 p NS

11 0.15 20% 150
p

2 0.033 0.8
p

2 p NS

the diameter of a stationary half ring should be bounded

by d"y ! 0.25# ! 18.8j and d"y ! 2 3 0.25# ! 6.3j.
The diameter d $ 9j measured on the half ring observed
in Fig. 2d is thus consistent with its quasistationary

behavior. The diameter of the half ring shown below

in Fig. 3 (inset), d $ 7.6j, is similarly found to be

FIG. 3. Top (a) and side (b) views of the stretched vortex
pinned to the cylinder at the end of run 2 (see Table I). The
inset shows the corresponding quasistationary half-ring solution

obtained at t ! 40
p

2 j!c.

between the corresponding bounds d"0.35# ! 11.4j and

d"2 3 0.35# ! 3j.
On a longer time scale, the quasistationary half ring can

evolve in two opposite ways: it starts moving either up-

stream or downstream. When the half ring is driven down-

stream, the vortex loop is continuously stretched while

the pinning points move towards the back of the cylin-

der. When the half ring moves upstream, it eventually

collapses against the cylinder, generating a laminar super-

flow. In order to distinguish between the two situations

we have carried out 3D runs summarized in Table I. Most

runs were performed at Mach numbersM slightly different

from that of the 2D stationary solutions M2D . The value

of DM ! "M 2 M2D#!M is indicated in the table. These

3D computations are rather expensive, e.g., to integrate the

NLSE up to the situation in Fig. 3b (run 2) necessitates a

resolution of 256 3 128 3 256 and 25 hours of CPU on
a Cray 90 machine.

Figure 3 shows the long-time dynamics for a stretch-

ing case: run 2 of Table I. The inset in Fig. 3b pictures

the corresponding quasistationary half ring for size com-

parison. Note that, as the vortex loop grows, its rear part

remains oblique to the flow (see Fig. 3a).

The runs of Table I are displayed schematically in

Fig. 4. The runs with vortex stretching are labeled by

circles and those without by 3. All runs were performed
at Mach numbers below Mc

2D"j!D#, indicated in Fig. 4 as
a solid line. The experimental [7] critical Mach number

and value of j!D are marked by an asterisk.

For 1!30 , j!D , 1!20, there is a frontier between
the dissipative and nondissipative cases that can be drawn

approximately as the dashed line in Fig. 4, which corre-

sponds to the expression Rs ! 5.5 with

Rs % j "UjD!cj ! MD!j . (6)
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FIG. 4. Parametric study of vortex stretching in a Mach num-
berM versus j!D log-log diagram. Circles: stretching; crosses:
no stretching (labels are run numbers of Table I). The asterisk
represents the experiment reported in [7]. The solid line is the
2D saddle-node bifurcation Mach number Mc

2D as a function of
j!D and the dashed line represents Eq. (6) (see text).
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[Nore et al., PRL 84, 2191 (2000)]

3d cylinder 3d sphere



A TYPICAL SIMULATION

‣ The airfoil moves initially with constant acceleration until it 
reaches a terminal velocity 

‣ The airfoil’s length is                and angle of attack 
‣ Confining potential at the end of the computational box

Top: evolution of the 
phase field. 

Bottom: evolution of 
the superfluid density 
field.

U∞ = 0.29c
L = 325ξ α = π/12



EXPLORATION OF THE PARAMETERS SPACE

‣ We vary both the airfoil length and terminal velocity
‣ The airfoil shape (            ) and angle of attack                are constant 

Left: number of vortices produced at the trailing edge. Vortices produced at the top are 
highlighted with a polygon.  Right: two simulation examples, the latter with the 
detachment of the boundary layer causing a stall condition.

λ = 0.1 α = π/12

HOW TO PREDICT THE NUMBER OF VORTICES GENERATED?



VORTEX GENERATION BY COMPRESSIBLE EFFECTS

Introducing a dispersive boundary layer with thickness              

C ≤ 3
8

L
ξ ( U∞

c )
2

sin2(α)(1 − Γ
ΓKJ )

2

r = C ξ

Number of vortices generated 
depending on the speed and 
length parameters.  The curves 
indicate the phenomenological 
prediction. The white area indicate 
the stalling behaviour.

where Γ = nκ ,  with n ∈ ℕ
and ΓKJ  is the KJ condition

best fit gives C ≈ 0.55



ABOUT LIFT AND DRAG

Lift and drag is obtained integrating the stress-energy tensor

Fk = − ∮.
Tjk nj dℓ , where Tjk = mρujuk + 1

2 δjkgρ2 − ℏ2

4m
ρ∂j∂k ln ρ

     closed path containing the airfoil 

Left: video showing the sound emission during the vortex nucleation at the trailing 
edge. Right: rescaled lift (dashed) and drag (solid) versus time computed for 
different contours around the airfoil.

.



ABOUT LIFT AND DRAG (SOUND FILTERED)

‣ filter the acoustic component in the velocity field 
‣ use density field prescribed by the stationary Bernoulli equation

Lift appears now quantised and drag becomes 
nearly zero after the vortex nucleation

Rescaled lift (dashed) 
and drag (solid) versus 
time computed for 
different contours 
around the airfoil 
removing sound



CONCLUSIONS

‣ An airfoil moving in a superfluid can generate vortices at the 
trailing edge by breaking the Landau’s critical speed 

‣ To preserve the total circulation, the airfoil acquires a non-zero 
circulation 

‣ This process is unsteady and generates sound
‣ When sound is removed (or steady regime is achieved) the airfoil 

experiences a quantised lift and no drag)
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