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FLYING IN A SUPERFLUID

» Recap on classical theory of flight: 2D and 3D
» Moving obstacles in superfluids

» How an airfoil obstacle/potential may affect the
superfluid flow



CLASSICAL THEORY OF FLIGHT

By Wright brothers - Library of Congress, Public Domain [Wikipedia]

> Inviscid theory to predict lift in stationary flow

» Viscous effects to explain the generation of lift and drag

effects
[D.J. Achenson, Elementary Fluid Dynamics, Oxford University Press, 1990]



CLASSICAL THEORY OF FLIGHT
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[M.Van Dyke, An Album of fluid Motion, 1982]

» The due to the positive angle of attack (or geometry) the fluid’s
speed is higher in the upper part of the airfoil (wing cross-section)

» The lift is a direct consequence of Bernoulli equation
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2D INVISCID THEORY FOR AN AIRFOIL

The two-dimensional flow resulting from the incompressible Euler
equation past an airfoil can be analytically solved using conformal mapping

[M.Van Dyke, An Album of fluid Motion, 1982]

> Complex velocity potential, solution of the
flow past a cylinder
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2D INVISCID THEORY FOR AN AIRFOIL

For a generic value of the terminal velocity, angle of attack, airfoil size
and circulation around the airfoil, the streamlines in stationary
conditions can be sketched as follows
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» Two stagnation points (zero speed) at the airfoil, whose positions
depend on the value of the circulation around the airfoil

» A divergence of the fluid’s speed at the trailing edge of the airfoil
due to the presence of a cusp



THE KUTTA-JOUKOWSKI CONDITION

For a generic value of the terminal velocity, angle of attack, airfoil size
and circulation around the airfoil, the streamlines in stationary
conditions can be sketched as follows
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The unphysical divergence of the fluid speed is cancelled by letting
one of the two stagnation points meeting the trailing edge. This
mathematically results in the Kutta Joukowskl (KJ) condition
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ADDING VISCOUS EFFECTS AND 3D CASE

Viscous effects: (F=o)

» cause generation of the K| circulation
around the airfoil (forbidden in inviscid fluid
due to Helmoltz’s third theorem)

s
> responsible for drag forces (form drag and @ %}:}

skin drag)

» responsible for stall effect due to
detachment of boundary layer

3D case:

> Vortex tubes created at the tips
of the wings

Here not considered, only 2D!



(A superfluid is a fluid where viscosity is identically zero, like a
superconductor is a material where electrical resistance is zero.)

Can an accelerated airfoil acquire circulation?

If so, what are the admissible values of the lift
for a given airfoil, angle of attack and terminal
velocity!?

Does the airfoil experience any drag?



THE GROSS-PITAEVSKII MODEL
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» It is a mean-field equation that can be formally derived to model
dilute Bose gases in the limit of zero temperature

» It also model qualitatively well other superfluids like liquid Helium
below the A-point

» This model is nothing but a nonlinear Schroedinger equation,
where y/(r, f) is a complex function describing the order
parameter of the system

» m is the mass of each boson, 71 is the reduced Planck’s constant, g
weight the effective binary collisions between the bosons, V. is
some external potential



THE GROSS-PITAEVSKII MODEL
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Using Madelung transformation y = \/,5 exp(i¢) and defining density
and velocity as p = m|w|* and v = A/mV ¢ , respectively, then
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» The GP models an inviscid, barotropic, and irrotational fluid

> The last term of the second equation, the quantum pressure,
becomes negligible at scales larger than the healing length &



THE GROSS-PITAEVSKII MODEL
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» In absence of the external potential, the lowest energy state
(ground-state) is the uniform state |y;q| = /P, Where p_, is

the bulk density of the fluid

+
» The healing length A ¥ =
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An external potential moving in a superfluid may cause the flow to
break the Landau’s critical velocity (sound speed in GP), to generate
excitations eventually causing dissipation
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[Frisch et al., PRL 69, 1644 (1992)]



THE GROSS-PITAEVSKII MODEL

oy h?
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Using Madelung transformation y = \/,5 exp(i¢) and defining density
and velocity as p = m|w|* and v = A/mV ¢ , respectively, then

ih Vi —glylPw—V,w=0

» Vortices are topological defect of the wave-function’s argument

y Each vortex has circulation I" = #‘)V -dl = n—A@ = nx




EXTERNAL POTENTIAL MOVING IN GP

An external potential moving in a superfluid may cause the flow to
break the Landau’s critical velocity (sound speed in GP), to generate
excitations eventually causing dissipation

3d cylinder 3d sphere
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[Winiecki & Adams, Europhys. Lett. 52,257-263 (2000)]
[Nore et al.,, PRL 84,2191 (2000)]



A TYPICAL SIMULATION
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» The airfoil moves initially with constant acceleration until it
reaches a terminal velocity U_ = 0.29¢

» The airfoil’s length is L = 325& and angle of attack a = #/12
» Confining potential at the end of the computational box



EXPLORATION OF THE PARAMETERS SPACE

> We vary both the airfoil length and terminal velocity
» The airfoil shape (4 = 0.1) and angle of attack a = /12 are constant
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Left: number of vortices produced at the trailing edge.Vortices produced at the top are
highlighted with a polygon. Right: two simulation examples, the latter with the
detachment of the boundary layer causing a stall condition.

HOW TO PREDICT THE NUMBER OF VORTICES GENERATED?



VORTEX GENERATION BY COMPRESSIBLE EFFECTS

Introducing a dispersive boundary layer with thickness r = C¢

where I" = nx, withn e N
and I, is the KJ condition

best fit gives C ~ 0.55

Number of vortices generated
depending on the speed and
length parameters. The curves
indicate the phenomenological
prediction. The white area indicate
the stalling behaviour.
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ABOUT LIFT AND DRAG

Lift and drag is obtained integrating the stress-energy tensor
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Left: video showing the sound emission during the vortex nucleation at the trailing
edge. Right: rescaled lift (dashed) and drag (solid) versus time computed for
different contours around the airfoil.



ABOUT LIFT AND DRAG (SOUND FILTERED)

» filter the acoustic component in the velocity field
» use density field prescribed by the stationary Bernoulli equation
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Lift appears now quantised and drag becomes
nearly zero after the vortex nucleation




CONCLUSIONS
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» An airfoil moving in a superfluid can generate vortices at the
trailing edge by breaking the Landau’s critical speed

» To preserve the total circulation, the airfoil acquires a non-zero
circulation

» This process is unsteady and generates sound

» When sound is removed (or steady regime is achieved) the airfoil
experiences a quantised lift and no drag)
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