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About me

I Associate professor at the UEA School of Mathematics

I Background in physics (theoretical physics)

I Main research area is theory and numerical simulations of
quantum fluids (MAGIC092 Introduction to superfluids and
turbulence, MAGIC099 Numerical methods in Python)

I In general I am interested in the dynamics of nonlinear
systems where waves/particles/excitations/coherent structures
arise and interact (fluids, solids, discrete chains, ...). An
example are discrete nonlinear chains

I Use theory of ODEs/PDEs, Hamiltonian & Lagrangian
mechanics, statistical mechanics, nonlinear physics, fluid
mechanics, turbulence, quantum mechanics, and numerical
simulations
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Outline of the talk

I Introduction to the Fermi-Pasta-Ulham(-Tsingou) (FPUT)
model for nonlinear chains: definition and history of the
model, main literature results

I The wave-wave interaction / wave turbulence approach:
e�cient resonant interaction assumption, n-wave interactions,
canonical transformations, estimation of n-wave interaction
timescales

I Numerical simulations

I Conclusions
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The weakly nonlinear chain model (FPUT system)

N equal masses m, at positions qj with j = 1, . . .N, connected by
the identical weakly nonlinear springs with their neighbours

modified Hooke’s law F ' ��q(� + ↵�q + ��q2 . . . )

The ↵-FPU system has equation of motion and Hamiltonian

mq̈j = (qj+1 + qj�1 � 2qj) [� + ↵(qj+1 � qj�1)] , j = 1, . . . ,N

H(p, q) =
1

2

NX

j=1

p2j +
NX

j=1

V (qj+1 � qj) , with V (r) =
r2

2
+ ↵

r3

3
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Fermi, Pasta, Ulam (and Tsingou-Menzel) in Los Alamos

Enrico Fermi (1901-1954)
John Pasta (1909-1984) Stanislaw Ulam (1918-1984)

MANIAC I (1952-1957) Mary Tsingou-Menzel
(1928- )

(the story of Mary Tsingou-Menzel is narrated by Thierry Dauxois in the
general audience article appeared in Physics Today 56, January 2008)
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Solving the linear chain model with normal modes

Assume first to consider the simple linear system, that is the harmonic
chain (↵ = � = 0). This is fully solvable!

Assuming periodic boundary conditions, one introduces the discrete
Fourier transform and wave-action variable (normal mode)

Qk =
1
N

NX

j=0

qj e
�i 2⇡N jk , Pk = Q̇k , !k = 2| sin(⇡k/N)| , ak =

1p
2!k

(Pk�i!kQk),

mq̈j = � (qj+1 + qj�1 � 2qj) , j = 1, . . . ,N

=) i
dak
dt

= !kak , k = �N/2 + 1, . . . ,N/2

Each mode k evolves in time independently, ak(t) = ak(t0)e�i!k (t�t0),
that is saying that !k = 2| sin(⇡k/N)| is its angular frequency
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Normal modes in the ↵-FPU system

When ↵ 6= 0 then the evolution for the normal modes follows

i
dak1
dt

= !k1ak1+✏
X

k2,k3

V1,2,3

✓
ak2ak3�k1,k2+k3 + 2a⇤k2ak3�k1,k3�k2 + a⇤2a

⇤
3 �k1,�k2�k3

◆

with the nonlinear parameter and scattering matrix are given by

✏ = ↵�1/4/m3/4
qX

!k |ak(t0)|2 , V1,2,3 = �p
!k1!k2!k3/

h
2
p
2 sign(kk1k2k3)

i

So in this case each mode k1 interact continuously with many other
modes k2, k3: each possible interaction is weighted by V1,2,3 and it is
non-zero provided that the Kronecker � is non-zero 

I 43 t
a

I l

ki kathy l ki ka ka ki hz kz

model

i
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The original idea of Fermi

The ↵-FPUT model is the simplest toy model to study non-trivial (that is
nonlinear) dynamics in solid/crystalline one-dimensional structures

I each mass is an atom and the nonlinear springs
mimic the interaction with its two neighbours

I in time, nonlinear mode interactions will
redistribute energy among all the modes of the
system

I when (statistical) equipartition of energy has been
reach the systems has thermalised, that is it can
be described by some non-zero macroscopic
temperature

I the approach to the thermal equilibrium can
model transfer of heat into solids

 

I 43 t
a

I l

ki kathy l ki ka ka ki hz kz

model

i
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The Los Alamos report

Tuck & Menzel (1972), The superperiod of the
nonlinear weighted string (FPU) problem,
Advances in Mathematics, 9(3), 399-407.
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Review papers on the FPU system

I Ford, J. ”The Fermi-Pasta-Ulam problem: paradox turns
discovery.” Physics Reports 213.5 (1992): 271-310.

I Berman, G. P., and F. M. Izrailev. ”The Fermi-Pasta-Ulam
problem: fifty years of progress.” Chaos (Woodbury, NY) 15.1
(2005): 15104

I Carati, A., L. Galgani, and A. Giorgilli. ”The
Fermi-Pasta-Ulam problem as a challenge for the foundations
of physics.” Chaos: An Interdisciplinary Journal of Nonlinear
Science 15.1 (2005): 015105-015105.

I Weissert, Thomas P. ”The genesis of simulation in dynamics:
pursuing the Fermi-Pasta-Ulam problem.” Springer-Verlag
New York, Inc., 1999.

I Gallavotti, G., ed. ”The Fermi-Pasta-Ulam problem: a status
report.” Vol. 728. Springer, 2008.

Davide Proment Thermalisation in weakly nonlinear chains



Numerical simulations (Benettin et al. J Stat Phys 2013)
FPUT simulation Toda lattice simulation

I a metastable timescale is the one in which FPUT behaves
essentially as an integrable system (Toda lattice)

I a second timescale is instead typical of a non-integrable dynamics
and thermalisation is possible

I when does this transition occur?
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The wave-wave interaction approach

Inspired by the wave turbulence theory which may be applied to any
weakly nonlinear dispersive system like waves in optics, plasma, ocean,
Bose-Einstein condensates [Wave Turbulence, Nazarenko (2011)]

The (long time) e�cient energy transfer in the system goes only
trough exact resonant n-wave interaction processes satisfying

k1 ± k2 ± ....± kn = 0

!(k1)± !(k2)± ...± !(kn) = 0
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The interaction representation

I for instance in a swing one has to push at the right resonant
frequency in order to be e�cient

I the same idea applies to normal modes where the nonlinear
interactions are seen like a forcing term

Introduce the following rotation a0k(t) = ak(t)e i!k t , then

i
da0k1
dt

= ✏
X

k2,k3

V1,2,3

⇣
a0k2a

0
k3e

i�⌦(1)t�k1,k2+k3 + 2 a0⇤k2a
0
k3e

i�⌦(2)t�k1,k3�k2

+a0⇤k2a
0⇤
k3e

i�⌦(3)t�k1,�k2�k3

⌘
,

#1 term: k1 � k2 � k3 ,

#2 term: k1 + k2 � k3 ,

#3 term: k1 + k2 + k3 ,

�⌦(1) = !k1 � !k2 � !k3

�⌦(2) = !k1 + !k2 � !k3

�⌦(3) = !k1 + !k2 + !k3
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Umklapp (flip-over) scattering in crystals

Sketch of a normal process (N-process) and Umklapp process (U-process)

The (long time) e�cient energy transfer in the system goes only trough exact
resonant n-wave interaction processes satisfying

k1 ± k2 ± ....± kn = 0

!(k1)± !(k2)± ...± !(kn) = 0
=) k1 ± k2 ± ....± kn

N
= 0

!(k1)± !(k2)± ...± !(kn) = 0
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Non-existence of 3-wave interactions for ↵-FPU

Exact 3-wave resonant interactions need to satisfy

k1 ± k2 ± k3
N
= 0

!1 ± !2 ± !3 = 0
,

given !k = 2| sin (⇡k/N) |

Using trigonometric identities one may show that 3-wave resonant
interactions are forbidden, that is the resonant manifold is empty!
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Canonical transformation to introduce 4-wave interactions

a1 = b1 + ✏
X

k2,k3

⇣
A(1)
1,2,3b2b3�1,2+3 + A(2)

1,2,3b
⇤
2b3�1,3�2

+A(3)
1,2,3b

⇤
2b

⇤
3�1,�2�3

⌘
+ O(✏2) ,

where A(1,2,3)
1,2,3 = V1,2,3/(!1 ± !2 ± !3).

The equation of motion for the (transformed) mode is then

i
db1
dt

= !1b1 + ✏2
X

k2,k3,k4

T1,2,3,4b
⇤
2b3b4�1+2,3+4 + O(✏3) ,

that is it model at the first nontrivial order in ✏ a four-wave
interaction system
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4-wave interactions in the ↵-FPU

k1 + k2 � k3 � k4
N
= 0

!1 + !2 � !3 � !4 = 0
, given !k = 2| sin (⇡k/N) |

It is possible to show that the above system has solutions for
integer values of k

I Trivial solutions: all modes are equal or

k1 = k3, k2 = k4, or k1 = k4, k2 = k3

I Nontrivial solutions
{k1, k2,�k1,�k2}

with k1 + k2 = mN/2 and m 2 Z
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Isolated 4-wave resonant interactions in the ↵-FPU

I 4-waves resonant interactions are isolated

I no e�cient mixing of all modes, meaning that no
thermalisation can be achieved via a 4-wave process!

I the system truncated to 4-wave interactions, that is O(✏2),
turns out to be integrable [Henrici & Kappeler in Commun. Math.
Phys. (2008), Rink in Commun. Math. Phys. (2006)]
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Next order: 6-wave interactions in the ↵-FPU

I Trivial solutions:

either all modes equal or

k1 = k4, k2 = k5, k3 = k6

I Nontrivial symmetric resonances

{k1, k2, k3,�k1,�k2,�k3},

with k1 + k2 + k3 = mN/2 and
m 2 Z.

I Nontrivial non-isolated quasi-symmetric resonances

{k1, k2, k3,�k1,�k2, k3}, with k1 + k2 = mN/2 and m 2 Z
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Thermalisation timescale teq

The thermalisation timescale can be estimated from the wave turbulence
theory via a kinetic equation, and depends on the number of resonantly
interacting waves

for 6-wave interactions =) teq ⇠ 1/✏8 ,

given ✏ the nonlinearity of the initial condition, ✏ = ↵�1/4/m3/4
pP

!k |ak(t0)|2

How to check the thermalisation has been reached? From the kinetic
equation, the entropy function

s(t) =
X

k

fk log fk with fk =
N � 1
Etot

!kh|ak |2i, Etot =
X

k

!kh|ak |2i

will be minimised when thermalisation is reached!
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Numerical simulations: “short” timescale

Here ✏ = 0.012 and 3 modes belonging to the same quartet
are initially excited: k1 = 7, k2 = 9, k3 = �7.

One is expecting that the Umklapp mode k4 = �9 is going to be excited too.
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Numerical simulations: 4-wave interactions

Here ✏ = 0.012 and 3 modes belonging to the same quartet
are initially excited: k1 = 7, k2 = 9, k3 = �7.
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Numerical simulations: “long” thermalisation timescale

Here ✏ = 0.012 and 3 modes belonging to the same quartet
are initially excited: k1 = 7, k2 = 9, k3 = �7.
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Entropy measure and thermalisation time teq ⇠ 1/✏8

s(t) =
X

k

fk log fk with fk =
N � 1

Etot
!kh|ak |2i, Etot =

X

k

!kh|ak |2i

Entropy evolution for di↵erent
nonlinearities ✏ vs. time t

Entropy evolution for di↵erent
nonlinearities ✏ vs. rescaled time ✏8t

(averaging 1,000 realisations with initial conditions having the same wave
mode amplitudes but phases uniformly distributed)
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Conclusions

I resonant 3-wave interactions are forbidden; this implies that
on the short timescale 3-wave interactions will generate a
reversible dynamics

I via a canonical transformation, 4-wave resonant interactions
exist; however, we have shown that each resonant quartet is
isolated, preventing the full energy transfer between all
modes, therefore thermalisation

I the first significant interactions are 6-wave interactions; at
this timescale one finally observes thermalisation
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Further comments

I despite being a simple toy model, the seminal FPUT work has triggered a
lot of new maths and physics research (MAGIC021 Nonlinear Waves,
MAGIC083 Integrable Systems, MAGIC022 Dynamical Systems,
MAGIC090 Introduction to Continuum Mechanics)

I it is always a good idea to revisit an “old problem” from a di↵erent
perspective!

I weird physics appears in reduced dimensions, for example one-dimensional
chains exhibit anomalous heat di↵usion and ballistic transfer [Physical
Review Letters 125, 024101 (2020)], and current experiments in
nano-physics detect these phenomena [Nature Reviews Physics 3,
555-569 (2021)]

Thanks for your attention!

(based on the joint work with Miguel Onorato, Lara Vozella and Yuri V. L’vov
entitled “A route to thermalisation in the ↵-Fermi-Pasta-Ulam(-Tsingou)

system”, PNAS 112, 4208-4213, 2015)
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