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About me

I Background in physics (theoretical physics)

I Main research area is theory and numerical simulations of
quantum fluids

I In general, I am interested in the dynamics of nonlinear
systems where waves/particles/excitations/coherent structures
arise and interact (fluids, solids, discrete chains, ...). An
example are discrete nonlinear (anharmonic) chains

I Use theory of ODEs/PDEs, Hamiltonian & Lagrangian
mechanics, statistical mechanics, nonlinear physics, fluid
mechanics, turbulence, quantum mechanics, and numerical
simulations
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Outline of the talk

I Introduction to the Fermi-Pasta-Ulham(-Tsingou) (FPUT)
model for nonlinear (anharmonic) chains

I The wave-wave interaction / wave turbulence approach

I Thermalisation in the ↵-FPUT system

I Heat transport in the �-FPUT system

I Conclusions and outlooks
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The weakly nonlinear chain model (FPUT system)

N equal masses m, at positions qj with j = 1, . . .N, connected by
the identical weakly nonlinear springs with their neighbours

modified Hooke’s law F ' ��q(� + ↵�q + ��q2 + . . . )

The ↵-FPU system has Hamiltonian in the qs and ps
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Fermi, Pasta, Ulam (and Tsingou-Menzel) in Los Alamos

Enrico Fermi (1901-1954)
John Pasta (1909-1984) Stanislaw Ulam (1918-1984)

MANIAC I (1952-1957) Mary Tsingou-Menzel
(1928- )

(the story of Mary Tsingou-Menzel is narrated by Thierry Dauxois in the
general audience article appeared in Physics Today 56, January 2008)
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Solving the linear chain model with normal modes

Assume first to consider the simple linear system, that is the harmonic
chain (↵ = � = 0). This is fully solvable!
Assuming periodic boundary conditions, one introduces the discrete
Fourier transform and wave-action variable (normal mode)
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1
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Each mode k evolves in time
independently,
ak(t) = ak(t0)e�i!k (t�t0), that is
saying that !k = 2| sin(⇡k/N)| is its
angular frequency
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The original idea of Fermi

The FPUT model is the simplest toy model to study non-trivial (that is
nonlinear) dynamics in solid/crystalline one-dimensional structures

I each mass is an atom and the nonlinear springs
mimic the interaction with its two neighbours
around the equilibrium

I in time, nonlinear mode interactions will
redistribute energy among all the modes of the
system

I when (statistical) equipartition of energy has been
reached, the system has thermalised, that is it
can be described by some non-zero macroscopic
temperature

I perturbations on thermal equilibrium can model
transfer of heat
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The Los Alamos report

Tuck & Menzel (1972), The superperiod of the
nonlinear weighted string (FPU) problem,
Advances in Mathematics, 9(3), 399-407.
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Open questions

Several reviews on this topic:

Ford, J. ”The Fermi-Pasta-Ulam problem: paradox turns discovery.” Physics
Reports 213.5 (1992): 271-310; Berman, G. P., and F. M. Izrailev. ”The
Fermi-Pasta-Ulam problem: fifty years of progress.” Chaos (Woodbury, NY)
15.1 (2005): 15104; Carati, A., L. Galgani, and A. Giorgilli. ”The
Fermi-Pasta-Ulam problem as a challenge for the foundations of physics.”
Chaos: An Interdisciplinary Journal of Nonlinear Science 15.1 (2005):
015105-015105; Weissert, Thomas P. ”The genesis of simulation in dynamics:
pursuing the Fermi-Pasta-Ulam problem.” Springer-Verlag New York, Inc.,
1999; Gallavotti, G., ed. ”The Fermi-Pasta-Ulam problem: a status report.”
Vol. 728. Springer, 2008.

I Does the system thermalise for arbitrary small nonlinearity?
I What is the time-scale of thermalisation for finite N?
I What is the thermalisation time scale in the thermodynamic

limit N ! 1?
I What are the transport properties of perturbations over the

equilibrium?

Davide Proment Thermalisation and heat transport in anharmonic chains



The wave-wave interaction approach

Inspired by the wave turbulence theory which may be applied to any
weakly nonlinear dispersive system like waves in optics, plasma, ocean,
Bose-Einstein condensates [Wave Turbulence, Nazarenko (2011)]

I The (long time) e�cient energy transfer in the system goes only
trough exact resonant n-wave interaction processes satisfying

k1 ± k2 ± .... ± kn = 0

!(k1) ± !(k2) ± ... ± !(kn) = 0

I The long time usually scales as ✏⌘, given ✏ the small nonlinear
parameter, and ⌘ depends on the nonlinearity
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The interaction representation

I for instance in a swing one has to push at the right resonant
frequency in order to be e�cient

I the same idea applies to normal modes where the nonlinear
interactions are seen like a forcing term

Introduce the following rotation a0
k(t) = ak(t)e i!k t , then for ↵-FPUT

i
da0
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,

#1 term: k1 � k2 � k3 ,

#2 term: k1 + k2 � k3 ,

#3 term: k1 + k2 + k3 ,

�⌦(1) = !k1 � !k2 � !k3

�⌦(2) = !k1 + !k2 � !k3

�⌦(3) = !k1 + !k2 + !k3
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Thermalisation timescale teq for ↵-FPUT [PNAS 2015]

k1 ± k2 ± .... ± kn = 0

!(k1) ± !(k2) ± ... ± !(kn) = 0
, for FPUT

k = �N/2 + 1, . . . ,N/2

!(k) = 2| sin(⇡k/N)|

I Umklapp scattering is allowed, that is

k1 ± k2 ± .... ± kn
N
= 0

I in ↵-FPUT the 3-wave resonant manifold is
empty

I via a canonical transformation, the 4-wave
resonant manifold is not empty, but formed
by isolated quartets!

I via a canonical transformation, the 6-wave
resonant manifold is not empty and
connected

I hence teq ⇠ 1/✏8, where the nonlinearity
parameter is given by the initial condition
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4-waves and thermalisation time-scales [PNAS 2015]

Here ✏ = 0.012 and 3 modes
belonging to the same quartet

are initially excited: k1 = 7, k2 = 9,
k3 = �7.

Here ✏ = 0.012 and 3 modes
belonging to the same quartet

are initially excited: k1 = 7, k2 = 9,
k3 = �7.
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Entropy measure and teq ⇠ 1/✏8 [PNAS 2015]

s(t) =
X

k

fk log fk with fk =
N � 1

Etot
!kh|ak |2i, Etot =

X

k

!kh|ak |2i

Entropy evolution for di↵erent
nonlinearities ✏ vs. time t

Entropy evolution for di↵erent
nonlinearities ✏ vs. rescaled time ✏8t

(averaging 1,000 realisations with initial conditions having the same wave
mode amplitudes but phases uniformly distributed)
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teq towards the thermodynamic limit N ! 1

I All the previous reasoning and results are valid for small N (in our
calculations N = 64)

I For large N, going towards the thermodynamic limit, the nonlinear
broadening of the dispersion relation is large enough to let energy
spreading between the isolated quartets, leading to for teq ⇠ 1/✏4

I This behaviour has been thoroughly investigated in the �-FPUT
where teq ⇠ 1/✏4 for small N and teq ⇠ 1/✏2 for large N
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The non-homogeneous problem

I Micro-scale: Newton’s law, mẍi = �riU

I Meso-scale: wave kinetic equation, @nk
@t + vk

@nk
@x = C (nk) from WT

I Macro-scale: Fourier’s law, J = �erT , where e is the thermal
conductivity

At macro-scale, applying the conservation law for energy (in 1-d)

@E
@t

+
@J
@x

= 0 =) @T
@t

=
@
@x


e

c
@T
@x

�

where E is an energy per unit volume, c = @E/@T the heat capacity
The temperature profile between two thermostats in stationary conditions, for
constant e/c, is T (x) = ax + b, that is linear
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Anomalous conductivity/transport

In principle the conductivity (like the resistivity) is an intrinsic
property of the material and should not depend on the size,
however results emerged from intensive numerical simulations and
experiments in low-dimensional systems show that:

I the conductivity may be size-dependent e(L) ⇠ L↵ where

↵ = 0 , normal conduction

0 < ↵  1 , anomalous conduction

↵ = 1 , ballistic conduction

I energy perturbations may propagate super-di↵usively: a local
perturbation of the energy broadens and its variance grows in
time as

�2(t) ⇠ t� , with � > 1
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Numerical and experimental evidence

Numerics: one-dimensional chain
(Lepri, LNP 2016)

8 S. Lepri et al.

101 102 103
L

101

102

κ(L)

L0.35

Fig. 1.3 Scaling of the finite-size conductivity for the FPU-˛ˇ model: with energy e D 1 and
cubic coupling constant ˛ D 0:1

where we assume unitary-mass particles, while !˙’s are two independent Gaussian
processes with zero mean and variance 2"kBT˙ (kB is the Boltzmann constant). The
coefficient " is the coupling strength with the heat baths.

After a long enough transient, an off-equilibrium stationary state sets in, with
a net heat current flowing through the lattice.2 The thermal conductivity # of
the chain is then estimated as the ratio between the time-averaged flux j and the
overall temperature gradient .TC ! T!/=L, where L is the chain length. Notice
that, by this latter choice, # amounts to an effective transport coefficient, including
both boundary and bulk scattering mechanisms. The average j can be estimated in
several equivalent ways, depending on the employed thermostatting scheme. One
possibility is to directly measure the energy exchanges with the two heat reservoirs
[26, 64]. A more general (thermostat-independent) definition consists in averaging
the heat flux as defined by (1.9).

As a result of many independent simulations performedwith the above-described
methods, it is now established that # / L˛ for L large enough. Figure 1.3 illustrates
the typical outcome of simulations for the FPU chain.

1.3.2 Long-Time Tails

In the spirit of linear-response theory, transport coefficients can be computed from
equilibrium fluctuations of the associated currents. More precisely, by introducing

2From the mathematical point of view, the existence of a unique stationary measure is a relevant
question and has been proven in some specific cases models of this class, see the review [8, 28, 29].

Experiments: SiGe nanowires
(from C.W. Chang, 2016)

8 Experimental Probing of Non-Fourier Thermal Conductors 313

Fig. 8.4 (a) A representative STEM image of a homogeneously alloyed Si0.9Ge0.1 nanowire.
(b) An atomic-resolution image of (a) showing the crystalline lattice. (c and d), Si and
Ge K-edge elemental mappings of the yellow-dotted area of (a) showing homogeneously Si and
Ge distributions. (e) A representative STEM image of a Si0.4Ge0.6 nanowire showing uniform
intensity distributions radially and aperiodic striped distributions axially. (f) An atomic-resolution
image of (e) displaying a twin boundary. (g and h), Si and Ge K-edge elemental mappings of the
yellow-dotted area of (e) showing that Si and Ge elements are homogeneously alloyed with striped
composition variations [23]

Fig. 8.5 A false colored SEM image of a thermal conductivity test fixture consisting of suspended
heater and sensor pads with a SiGe nanowire anchored on it

were measured. Under steady state, K can be obtained using the relation

K D P
!TH !!TS

!
!TS

!TH C!TS

"
(8.5)

where P is the Joule heating power, "TH and "TS is the temperature raise on the
heater and the sensor, respectively. Due to the linear relation of resistance with
respect to temperature of the Pt film resistors, the temperature variations of the
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The �-FPUT model with thermostats

q̇n = pn

ṗn = (qn+1 + qn�1 � 2qn) + �
⇥
(qn+1) � qn)

3 + (qn � qn�1)
3
⇤

� B(p1, pN)

with
B(p1, pN) = ⇠1p1�1,n + ⇠NpN�N,n

where ⇠1 and ⇠N are Nosé-Hoover thermostats satisfying

⇠̇1 =
1

⌧2
+

✓
p21
T+

� 1

◆

⇠̇N =
1

⌧2
�

✓
p2N
T�

� 1

◆
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Understanding anomalous conduction [PRL 2020]

I A stationary state is reached
when a net heat current
flows through the lattice

I We assume the separation
of scales � =

p
L ⇠

p
N and

measure “local” statistical
properties averaging over
the meso-scale �

We compute the “local” wave energy
spectral density

êk(k, x , t) = !khnk(k, x , t)i� ,

where nk(k, x , t) is the wave spectral
density

3

FIG. 1. Steady state energy spectrum for N = 215.

is a value k = kc for which the two contributions in eq. (4)
balance each other:

vkc

�
⇠ 1

⌧kc

. (6)

Assuming very small deviations from local equilibrium (see
discussion at the end of the letter) and small k, a direct analyt-
ical calculation [16, 26] yields

⌧k / k�5/3 , for |k| ⌧ 1 , (7)

which plugged into eq. (6) leads to

kc / ��3/5 / L�3/10, (8)

where we have used the fact that L / �2 and, for small k, vk '
1. Based on the above discussion, we conjecture that: i) the
field ak can be split into two parts: the modes with |k| > kc are
essentially in thermodynamic equilibrium within cells of size
� and verify Fourier’s law, while for |k|  kc the modes are
ballistic or scarcely interacting; ii) the scaling of e with L is
strictly related to the scaling of kc with L, Eq. (8). Numerical
evidence of the conjecture is given below.

Numerical results. Our simulations solve 2N coupled
equations of motion for the Hamiltonian (1) with � = 0.1,
integrated with fourth order Runge-Kutta method with time
step 5�10�2. Fixed boundary conditions are used for the two
walls q0 = 0 and qN+1 = 0, and the two particles j = 1 and
j = N are coupled with Nosé-Hoover thermostats at temper-
atures T+ = 0.3 and T� = 0.2, respectively at the left and the
right ends. In all our simulations we consider N su�ciently
large so that the discrete-k e�ects, which lead to a lack of four-
wave resonances, do not take place, see [22]. Di�erently from
previous works where the spectral analysis is performed on the
full length of the chain, we are interested in the local spectral
properties of the system. Therefore, we consider the meso-
scopic length � =

p
N =

p
L. Macroscopic observables are

averaged spatially over mesoscopic boxes of size �, and in time
at the steady state, over 2.5 � 105 time units after an initial re-
laxation transient of 5 � 104 units. An additional ensemble
averaging over 5 independent realizations is used to improve
statistical convergence. In Fig. 1, we show the wave energy
spectral density (energy spectrum), êk = !knk, computed
locally on a spatial window of mesoscopic size, around two

FIG. 2. The red and blue solid lines are the symmetrized stationary
local energy spectra computed in windows of width

p
N centered at

x1 = 0.2N and x2 = 0.8N , respectively. The dashed lines with
same colors are at the respective average energy per particle at x1

and x2. The yellow line is the spectrum performed on the full chain.

points placed at x = 0.2L, close to the thermostat at higher
temperature and x = 0.8L, close to the one at lower tempera-
ture. Observe that the energy spectrum is clearly asymmetric
and the temperature associated with waves moving to the right,
k > 0, is higher than for waves moving to the left, k < 0.
Moreover, for high wave numbers the spectrum is almost flat,
i.e. those modes are in an equipartition state. In order to high-
light local thermalization, noticing that the asymmetric part of
the spectrum does not contribute to the total energy, in Fig. 2
we plot the symmetrized energy spectrum (êk + ê�k)/2, for
di�erent values of N . Local equipartition is observed for the
high wave numbers, say the modes with |k| > kc. Instead, the
energetic content of the low-wave-number modes (|k| < kc)
tends to the average temperature T̄ throughout the chain. As
N increases, kc shifts toward the origin and the separation be-
tween the two states becomes sharper. For N = 215, the two
states are clearly separated, with a narrow transition region.

In Fig. 3 we show the energy per particle e(x), averaged in
time and in space over mesoscopic boxes of width � =

p
N for

N = 29 and N = 213. The figure shows that as N increases
the profile tends to the expected Fourier profile. In the lower
panel, the case for N = 213 is further investigated and e(x) is
decomposed as

e(x) = e>(x; kc) + e<(x; kc) (9)

using the estimate kc = 0.75 from the central panel of Fig. 2,
and where e>(x; k0) is obtained from q(x) and p(x) after they
have been filtered in Fourier space and only contributions from
wave numbers |k| > k0 have been retained; e<(x; k0) has con-
tributions only from |k|  k0. As conjectured, the profile for
e>(x; kc) is consistent with the expected linear profile, typical
of Fourier’s law, and the second one is consistent with a flat
profile with temperature T̄ ; this latter behaviour is typical of
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Symmetric part of the energy spectra [PRL 2020]
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FIG. 1. Steady state energy spectrum for N = 215.

is a value k = kc for which the two contributions in eq. (4)
balance each other:

vkc

�
⇠ 1

⌧kc

. (6)

Assuming very small deviations from local equilibrium (see
discussion at the end of the letter) and small k, a direct analyt-
ical calculation [16, 26] yields

⌧k / k�5/3 , for |k| ⌧ 1 , (7)

which plugged into eq. (6) leads to

kc / ��3/5 / L�3/10, (8)

where we have used the fact that L / �2 and, for small k, vk '
1. Based on the above discussion, we conjecture that: i) the
field ak can be split into two parts: the modes with |k| > kc are
essentially in thermodynamic equilibrium within cells of size
� and verify Fourier’s law, while for |k|  kc the modes are
ballistic or scarcely interacting; ii) the scaling of e with L is
strictly related to the scaling of kc with L, Eq. (8). Numerical
evidence of the conjecture is given below.

Numerical results. Our simulations solve 2N coupled
equations of motion for the Hamiltonian (1) with � = 0.1,
integrated with fourth order Runge-Kutta method with time
step 5�10�2. Fixed boundary conditions are used for the two
walls q0 = 0 and qN+1 = 0, and the two particles j = 1 and
j = N are coupled with Nosé-Hoover thermostats at temper-
atures T+ = 0.3 and T� = 0.2, respectively at the left and the
right ends. In all our simulations we consider N su�ciently
large so that the discrete-k e�ects, which lead to a lack of four-
wave resonances, do not take place, see [22]. Di�erently from
previous works where the spectral analysis is performed on the
full length of the chain, we are interested in the local spectral
properties of the system. Therefore, we consider the meso-
scopic length � =

p
N =

p
L. Macroscopic observables are

averaged spatially over mesoscopic boxes of size �, and in time
at the steady state, over 2.5 � 105 time units after an initial re-
laxation transient of 5 � 104 units. An additional ensemble
averaging over 5 independent realizations is used to improve
statistical convergence. In Fig. 1, we show the wave energy
spectral density (energy spectrum), êk = !knk, computed
locally on a spatial window of mesoscopic size, around two

FIG. 2. The red and blue solid lines are the symmetrized stationary
local energy spectra computed in windows of width

p
N centered at

x1 = 0.2N and x2 = 0.8N , respectively. The dashed lines with
same colors are at the respective average energy per particle at x1

and x2. The yellow line is the spectrum performed on the full chain.

points placed at x = 0.2L, close to the thermostat at higher
temperature and x = 0.8L, close to the one at lower tempera-
ture. Observe that the energy spectrum is clearly asymmetric
and the temperature associated with waves moving to the right,
k > 0, is higher than for waves moving to the left, k < 0.
Moreover, for high wave numbers the spectrum is almost flat,
i.e. those modes are in an equipartition state. In order to high-
light local thermalization, noticing that the asymmetric part of
the spectrum does not contribute to the total energy, in Fig. 2
we plot the symmetrized energy spectrum (êk + ê�k)/2, for
di�erent values of N . Local equipartition is observed for the
high wave numbers, say the modes with |k| > kc. Instead, the
energetic content of the low-wave-number modes (|k| < kc)
tends to the average temperature T̄ throughout the chain. As
N increases, kc shifts toward the origin and the separation be-
tween the two states becomes sharper. For N = 215, the two
states are clearly separated, with a narrow transition region.

In Fig. 3 we show the energy per particle e(x), averaged in
time and in space over mesoscopic boxes of width � =

p
N for

N = 29 and N = 213. The figure shows that as N increases
the profile tends to the expected Fourier profile. In the lower
panel, the case for N = 213 is further investigated and e(x) is
decomposed as

e(x) = e>(x; kc) + e<(x; kc) (9)

using the estimate kc = 0.75 from the central panel of Fig. 2,
and where e>(x; k0) is obtained from q(x) and p(x) after they
have been filtered in Fourier space and only contributions from
wave numbers |k| > k0 have been retained; e<(x; k0) has con-
tributions only from |k|  k0. As conjectured, the profile for
e>(x; kc) is consistent with the expected linear profile, typical
of Fourier’s law, and the second one is consistent with a flat
profile with temperature T̄ ; this latter behaviour is typical of

To highlight the asymmetry
and behaviour around k = 0,
we evaluate the symmetric
part of the energy spectra

êk + ê�k

2
,

where

êk(k, x , t) = !khnk(k, x , t)i�
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is a value k = kc for which the two contributions in eq. (4)
balance each other:

vkc

�
⇠ 1

⌧kc

. (6)

Assuming very small deviations from local equilibrium (see
discussion at the end of the letter) and small k, a direct analyt-
ical calculation [16, 26] yields

⌧k / k�5/3 , for |k| ⌧ 1 , (7)

which plugged into eq. (6) leads to

kc / ��3/5 / L�3/10, (8)

where we have used the fact that L / �2 and, for small k, vk '
1. Based on the above discussion, we conjecture that: i) the
field ak can be split into two parts: the modes with |k| > kc are
essentially in thermodynamic equilibrium within cells of size
� and verify Fourier’s law, while for |k|  kc the modes are
ballistic or scarcely interacting; ii) the scaling of e with L is
strictly related to the scaling of kc with L, Eq. (8). Numerical
evidence of the conjecture is given below.

Numerical results. Our simulations solve 2N coupled
equations of motion for the Hamiltonian (1) with � = 0.1,
integrated with fourth order Runge-Kutta method with time
step 5�10�2. Fixed boundary conditions are used for the two
walls q0 = 0 and qN+1 = 0, and the two particles j = 1 and
j = N are coupled with Nosé-Hoover thermostats at temper-
atures T+ = 0.3 and T� = 0.2, respectively at the left and the
right ends. In all our simulations we consider N su�ciently
large so that the discrete-k e�ects, which lead to a lack of four-
wave resonances, do not take place, see [22]. Di�erently from
previous works where the spectral analysis is performed on the
full length of the chain, we are interested in the local spectral
properties of the system. Therefore, we consider the meso-
scopic length � =

p
N =

p
L. Macroscopic observables are

averaged spatially over mesoscopic boxes of size �, and in time
at the steady state, over 2.5 � 105 time units after an initial re-
laxation transient of 5 � 104 units. An additional ensemble
averaging over 5 independent realizations is used to improve
statistical convergence. In Fig. 1, we show the wave energy
spectral density (energy spectrum), êk = !knk, computed
locally on a spatial window of mesoscopic size, around two

FIG. 2. The red and blue solid lines are the symmetrized stationary
local energy spectra computed in windows of width

p
N centered at

x1 = 0.2N and x2 = 0.8N , respectively. The dashed lines with
same colors are at the respective average energy per particle at x1

and x2. The yellow line is the spectrum performed on the full chain.

points placed at x = 0.2L, close to the thermostat at higher
temperature and x = 0.8L, close to the one at lower tempera-
ture. Observe that the energy spectrum is clearly asymmetric
and the temperature associated with waves moving to the right,
k > 0, is higher than for waves moving to the left, k < 0.
Moreover, for high wave numbers the spectrum is almost flat,
i.e. those modes are in an equipartition state. In order to high-
light local thermalization, noticing that the asymmetric part of
the spectrum does not contribute to the total energy, in Fig. 2
we plot the symmetrized energy spectrum (êk + ê�k)/2, for
di�erent values of N . Local equipartition is observed for the
high wave numbers, say the modes with |k| > kc. Instead, the
energetic content of the low-wave-number modes (|k| < kc)
tends to the average temperature T̄ throughout the chain. As
N increases, kc shifts toward the origin and the separation be-
tween the two states becomes sharper. For N = 215, the two
states are clearly separated, with a narrow transition region.

In Fig. 3 we show the energy per particle e(x), averaged in
time and in space over mesoscopic boxes of width � =

p
N for

N = 29 and N = 213. The figure shows that as N increases
the profile tends to the expected Fourier profile. In the lower
panel, the case for N = 213 is further investigated and e(x) is
decomposed as

e(x) = e>(x; kc) + e<(x; kc) (9)

using the estimate kc = 0.75 from the central panel of Fig. 2,
and where e>(x; k0) is obtained from q(x) and p(x) after they
have been filtered in Fourier space and only contributions from
wave numbers |k| > k0 have been retained; e<(x; k0) has con-
tributions only from |k|  k0. As conjectured, the profile for
e>(x; kc) is consistent with the expected linear profile, typical
of Fourier’s law, and the second one is consistent with a flat
profile with temperature T̄ ; this latter behaviour is typical of
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Energy profile in space with decomposition [PRL 2020]

Introducing a cut-o↵ scale kc ,
we compute the total “local”
energy as

e(x) = e>(x ; kc) + e<(x ; kc) ,

where for e> only
contributions from the modes
with |k| > kc have been
retained, and viceversa for e<

The anomalous conduction
results from the coexistence
of ballistic modes and
di↵usive (kinetic) modes!

4

FIG. 3. Top: Numerical profiles of e(x). Bottom: The blue line of
the upper panel (N = 213) is decomposed into its contributions from
|k| � kc (light blue) and |k| > kc (dark blue), normalized by the
fraction of modes in each set: kc/⇡ and (⇡ � kc)/⇡, respectively. A
value kc = 0.75 is used, based on numerical estimate from Fig. 2.

FIG. 4. Top left: net average energy current per mode ĵe(k). Top
right: scaled current Nĵe(k) (cf. Fig. 2.6 of [40]). Bottom left: N -
dependent scaling of e compared to the N2/5 scaling (black dashed
line). Bottom right: N -dependent scaling behavior for the filtered
conductivity: ballistic O(N) divergence at low k’s, kinetic constant
conductivity at high k’s, and O(N2/5) divergence. The two upper
curves sum to the total e in the adjacent panel.

harmonic (collisionless) chains.
We now devote our attention to the energy fluxes; in steady

state conditions the flux is independent of x. We therefore de-
fine the net spectral energy current [7], as

ĵe(k) := vk!k(nk � n�k)/2 , (10)

which depends on the asymmetric part of the spectrum. Note
that ĵe(k) = ĵe(�k) and the Fourier transform for calculating

nk is made on the entire length of the chain. This is because
in stationary conditions the flux is independent of x. In Fig. 4,
the upper panels show the behavior of ĵe(k) while varying N .
As N doubles, ĵe remains constant for low wave numbers (bal-
listic modes), while it roughly halves for higher wave numbers
(kinetic modes). This means that the ballistic-modes contribu-
tion to the energy current is independent of N , as expected for
the harmonic chain [6], while for the kinetic modes it is pro-
portional to N�1. In the lower left panel we show the energy
conductivity as defined by Eq. (3), where hJei =

�
k ĵe(k).

The plot shows a scaling compatible with previous numerical
results, e ⇠ L2/5. We now consider the filtered conductivity

>
e (k) = N

�T

X

|k�|>k

ĵe(k
0), <

e (k) = N
�T

X

|k�|<k

ĵe(k
0). (11)

On the lower right panel of Fig. 4 we show three quantities
with di�erent scalings: Choosing a threshold k = 1.4 > kc

for all N (cf. Fig. 2), we observe that <
e (1.4) ⇠ N2/5,

while >
e (1.4) converges to constant (compatible with regular

Fourier’s law). On the other hand, considering wave numbers
that are always ballistic (0.35 < kc for all N ), thus excluding
modes around kc, we obtain that <

e (0.35) ⇠ N1, typical of
the harmonic chain but far from the anomalous exponent 0.4.
Thus, the way kc scales with the size L, Eq. (8), plays a key
role concerning the anomaly, as will be shown in the following.

Macroscopic equations. Here, we show how some further
assumptions based on numerical evidence yield simple macro-
scopic equations that reproduce the main observed properties.
Multiplying (4) by !k and integrating over k 2 [�⇡, ⇡] yields

@�e(x, ⌧) = �@xje(x, ⌧) (12)

where e(x, ⌧) :=
� +�

�� ê(k)dk and je(x, ⌧) :=
� +�

�� ĵe(k)dk
are the macroscopic energy density and current, respectively.
In the filtering notation of Eq. (11), let us split the current as

je = j<
e (kc) + j>

e (kc) . (13)

Because of our numerical results, we assume the large-L rela-
tions j<

e (kc) = 2
� kc

0 ĵe(k)dk / k2
c — since ĵe(k) / k for

k ⌧ 1, cf. Fig. 4 — and j>
e (kc) = �kin@xe, with kkin > 0

— i.e. Fick’s law for the kinetic modes. Using the estimate of
Eq. (8), kc ⇠ L�3/10, we obtain:

e = <
e (kc) + >

e (kc) , <
e (kc) / L

2
5 , >

e (kc) = kin .
(14)

Plugging (13) into (12) and taking into account that in the bulk
the energy associated to ballistic modes is constant, we obtain

@x

�
kin @xe>(x; kc)

�
= 0 . (15)

Imposing the fraction 1� kc
� of kinetic modes to have “temper-

ature” T± at the boundaries; and that the fraction of ballistic
modes kc

� is at constant “temperature” T̄ , we have

e(x) = e<(x; kc)+e>(x; kc) = kc
� T̄+

�
1 � kc

�

�
T (x) , (16)
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Estimation of kc [PRL 2020]

I assume 4-wave kinetic equation at meso-scale �, that is

@nk
@t

+ vk
@nk
@x

= C (nk) , where vk =
@!

@k

I In stationary conditions transport and collision integral
contributions in the kinetic equation balance each other

vkc
�

⇠ 1

⌧kc

I Assuming small deviations from local equilibrium and small
ks, a direct analytical calculation yields

⌧k ⇠ k�5/3 , for |k | ⌧ 1 =) kc ⇠ ��3/5 ⇠ L�3/10
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Conclusions

I For small N the FPUT model exhibits a very long
thermalisation time due to the (almost) absence of
interactions between the modes of the system (teq / 1/✏8 for
↵-FPUT, teq / 1/✏4 for �-FPUT)

I for large N the nonlinear broadening is large enough and the
e↵ective KE has 4-wave interactions, where still long waves
almost do not interact if the system is finite

I a separation of ballistic and di↵usive scales, confirmed in
deterministic simulations of �-FPUT by averaging over a
mesoscale � /

p
N, explains the anomalous di↵usion without

the need to invoke super-di↵usion

I the separation scale can be estimated as kc ⇠ ��3/5 ⇠ L�3/10

using the non-homogenous 4-wave KE
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Outlooks

I analysis of the anomalous conduction as a superposition of ballistic
and di↵usive modes in the meso-scopic framework [work in
progress!]

I accurate characterisation of the transport properties vs.
temperature (and other eventual conserved quantities)

I derivation of the macroscopic model without fractional di↵usion

Thanks for your attention!
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