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» Background in physics (theoretical physics)

» Main research area is theory and numerical simulations of
quantum fluids

» In general, | am interested in the dynamics of nonlinear
systems where waves/particles/excitations/coherent structures
arise and interact (fluids, solids, discrete chains, ...). An
example are discrete nonlinear (anharmonic) chains

» Use theory of ODEs/PDEs, Hamiltonian & Lagrangian
mechanics, statistical mechanics, nonlinear physics, fluid
mechanics, turbulence, quantum mechanics, and numerical
simulations
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Outline of the talk
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Introduction to the Fermi-Pasta-Ulham(-Tsingou) (FPUT)
model for nonlinear (anharmonic) chains

The wave-wave interaction / wave turbulence approach
Thermalisation in the a-FPUT system
Heat transport in the 5-FPUT system

Conclusions and outlooks

Davide Proment Thermalisation and heat transport in anharmonic chains



The weakly nonlinear chain model (FPUT system)

N equal masses m, at positions g; with j = 1,... N, connected by
the identical weakly nonlinear springs with their neighbours
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modified Hooke's law F ~ —Agq(x + aAg + fAG* +...)

The a-FPU system has Hamiltonian in the gs and ps

é(qj —qip1) ..

(g7 — gi+1)* + 4

w2
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Fermi, Pasta, Ulam (and Tsingou-Menzel) in Los Alamos

Stanislaw Ulam (1918-1984)

MANIAC | (1952-1957) Mary Tsingou-Menzel
(1928- )

(the story of Mary Tsingou-Menzel is narrated by Thierry Dauxois in the
general audience article appeared in Physics Today 56, January 2008)
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Solving the linear chain model with normal modes

Assume first to consider the simple linear system, that is the harmonic
chain (o = g =0). This is fully solvable!

Assuming periodic boundary conditions, one introduces the discrete
Fourier transform and wave-action variable (normal mode)

N
_ 1 —i2mjk A _ . _ 1 .
Qk = E gie "N, Pe=Q«, wk =2|sin(rk/N)|, ax = \/TTk(Pk_Ikak)’

.da
(g — qj+1)21 = ,d—: = wak, k=—N/241,...,N/2

Each mode k evolves in time
independently,

ar(t) = ax(to)e~w(t=%)  that is
saying that wy = 2|sin(mwk/N)| is its
angular frequency
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The original idea of Fermi

i1 j j+1
The FPUT model is the simplest toy model to study non-trivial (that is
nonlinear) dynamics in solid/crystalline one-dimensional structures

» each mass is an atom and the nonlinear springs
mimic the interaction with its two neighbours o
around the equilibrium

P in time, nonlinear mode interactions will
redistribute energy among all the modes of the
system

» when (statistical) equipartition of energy has been
reached, the system has thermalised, that is it
can be described by some non-zero macroscopic
temperature

fungy e —sde W (a,
3
w

» perturbations on thermal equilibrium can model
transfer of heat
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e Los Alamos report

STUDIES OF NON LINEAR PROBLEMS

E, FErMI, J. PasTa, and S. ULau
Document LA~1940 (May 1935).

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonlinear terms has been studied on the Los Alamos computer MANIAC 1. The
ronlinear terms considered are quadratic, cubic, and broken linear types. The results are
analyzed into Fourier components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom,
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Open questions

Several reviews on this topic:

Ford, J. " The Fermi-Pasta-Ulam problem: paradox turns discovery.” Physics
Reports 213.5 (1992): 271-310; Berman, G. P., and F. M. lzrailev. "The
Fermi-Pasta-Ulam problem: fifty years of progress.” Chaos (Woodbury, NY)
15.1 (2005): 15104; Carati, A., L. Galgani, and A. Giorgilli. " The
Fermi-Pasta-Ulam problem as a challenge for the foundations of physics.”
Chaos: An Interdisciplinary Journal of Nonlinear Science 15.1 (2005):
015105-015105; Weissert, Thomas P. " The genesis of simulation in dynamics:
pursuing the Fermi-Pasta-Ulam problem.” Springer-Verlag New York, Inc.,
1999; Gallavotti, G., ed. " The Fermi-Pasta-Ulam problem: a status report.”
Vol. 728. Springer, 2008.

» Does the system thermalise for arbitrary small nonlinearity?

» What is the time-scale of thermalisation for finite N7

» What is the thermalisation time scale in the thermodynamic
limit N — oo?

» What are the transport properties of perturbations over the
equilibrium?
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The wave-wave interaction approach

Inspired by the wave turbulence theory which may be applied to any
weakly nonlinear dispersive system like waves in optics, plasma, ocean,
Bose-Einstein condensates [Wave Turbulence, Nazarenko (2011)]

» The (long time) efficient energy transfer in the system goes only
trough exact resonant n-wave interaction processes satisfying

kitko+....2k, =0
w(ky) tw(ky) = ... £w(k,) =0

» The long time usually scales as €, given € the small nonlinear
parameter, and 1 depends on the nonlinearity
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The interaction representation

> for instance in a swing one has to push at the right resonant
frequency in order to be efficient

» the same idea applies to normal modes where the nonlinear
interactions are seen like a forcing term

Introduce the following rotation a}(t) = ax(t)e™*t, then for a-FPUT

da, k

e

inQt 1w iAQ®)t
=€ E V172,3 <3k23k3 5k1,k2+k3 +2 iy 3k, € (5;(1,;(3 ko
ka,k3

1% 1k _iAQG)t
tay,age 5k17—k2 k3) s

#1 term: kg — ko — k3, AQW) = Wiy — Whky — Wk,
#2 term: ki + ko — ks, AQB) = Wi, + Wiy, — Wi,
#3term: ki + ke + k3, AQC) = wy + wy, + wi,
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Thermalisation timescale t.q for a-FPUT [PNAS 2015]

i+ hyt ot k=0 k=-N/2+1,...,N/2
, for FPUT .
wlky) Tw(k) £ ... tw(k,) =0 w(k) = 2|sin(mk/N)|

» Umklapp scattering is allowed, that is
kit ko £ .tk 20

» in a-FPUT the 3-wave resonant manifold is
empty

» via a canonical transformation, the 4-wave
resonant manifold is not empty, but formed
by isolated quartets!

» via a canonical transformation, the 6-wave
resonant manifold is not empty and
connected

> hence toq ~ 1/68, where the nonlinearity
parameter is given by the initial condition
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4-waves and thermalisation time-scales [PNA
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Here ¢ = 0.012 and 3 modes
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are initially excited: k1 =7, ko =9,
ks = —7.
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Entropy measure and t., ~ 1/€ [PNAS 2015]

. N—-1
S(t) = Z fi |Og fi with f = E wk<|ak|2>7 Eior = Zwkﬂak\z)
k
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(averaging 1,000 realisations with initial conditions having the same wave
mode amplitudes but phases uniformly distributed)
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teq towards the thermodynamic limit N — oo

» All the previous reasoning and results are valid for small N (in our

calculations N = 64)

» For large N, going towards the thermodynamic limit, the nonlinear
broadening of the dispersion relation is large enough to let energy
spreading between the isolated quartets, leading to for teq ~ 1/¢*

» This behaviour has been thoroughly investigated in the 5-FPUT
where teg ~ 1/¢* for small N and te, ~ 1/€> for large N
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non-homogeneous problem

T, T
| CACRECECECECY

» Micro-scale: Newton's law, mx; = —V;U

» Meso-scale: wave kinetic equation, 8'” + v a”k = C(ng) from WT

» Macro-scale: Fourier's law, J = —k.V T, where k. is the thermal
conductivity

At macro-scale, applying the conservation law for energy (in 1-d)

- 7—0 _— - =
+ c Ox

O0E 0J oT 0 [keOT
ot  Ox ot ox

where E is an energy per unit volume, ¢ = 9E/OT the heat capacity
The temperature profile between two thermostats in stationary conditions, for
constant ke/c, is T(x) = ax + b, that is linear
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Anomalous conductivity/transport

In principle the conductivity (like the resistivity) is an intrinsic
property of the material and should not depend on the size,
however results emerged from intensive numerical simulations and
experiments in low-dimensional systems show that:

» the conductivity may be size-dependent k(L) ~ L* where

a =0, normal conduction
0<a<1, anomalous conduction

a =1, ballistic conduction

P> energy perturbations may propagate super-diffusively: a local
perturbation of the energy broadens and its variance grows in
time as

o?(t) ~tP, with  B>1
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Numerical and experimental evidence

Numerics: one-dimensional chain

- Experiments: SiGe nanowires
(Lepri, LNP 2016)

(from C.W. Chang, 2016)
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The 5-FPUT model with thermostats

dn = Pn
Pn = (Gn+1 + Gn-1 — 2qn) + B[(gn+1) — qn)® + (qn — Gn-1)*]
— B(p1, pn)
with

B(p1, pn) = &1P101,n + ENPNON,A

where & and &y are Nosé-Hoover thermostats satisfying
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Understanding anomalous conduction [PRL 2020]

Microscopic dynamics

A R N pemeed _ _
| *\;\_9%\/ | > A stationary state is reached

when a net heat current

A= flows through the lattice
Mesoscopic relaxation
T, T » We assume the separation
b----- |-~ °f’ """""""" 1 of scales A = VL ~ v/N and
measure “local” statistical
L properties averaging over
by e Macroscopic continuum

the meso-scale A

< —————

— T o —e Ot

We compute the “local” wave energy —at 08N 8k x=0.2N global

spectral density °25M /“MWW\N
o024 N

ék(k,X, t)ZUJk<nk(kvxv t)>>\7 OZZMM
N =2

where ni(k, x, t) is the wave spectral T S o i 2 s
density
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Symmetric part of the energy spectra [PRL 2020]

at x=0.8N

at x=02N global

To highlight the asymmetry
and behaviour around k =0,
we evaluate the symmetric
part of the energy spectra

€k + €_«
2 )
FIG. 2. The red and blue solid lines are the symmetrized stationary
where local energy spectra computed in windows of width v/ N centered at
z1 = 0.2N and 22 = 0.8N, respectively. The dashed lines with
same colors are at the respective average energy per particle at x;
&« ( k7 X, t) = wyk <nk ( k’ X, t)>)\ and 2. The yellow line is the spectrum performed on the full chain.
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(ex+én)/2

Introducing a cut-off scale k,
we compute the total “local”
energy as

e(x) = e (x; ke) + €< (x; k),

where for e~ only
contributions from the modes
with |k| > kc have been
retained, and viceversa for e<

The anomalous conduction
results from the coexistence
of ballistic modes and
diffusive (kinetic) modes!
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FIG. 3. Top: Numerical profiles of ¢(z). Bottom: The blue line of
the upper panel (N = 2'%) is decomposed into its contributions from
|k| < ke (light blue) and |k| > k. (dark blue), normalized by the
fraction of modes in each set: k./m and (m — k.)/m, respectively. A
value k. = 0.75 is used, based on numerical estimate from Fig. 2.
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Estimation of k. [PRL 2020]

P> assume 4-wave kinetic equation at meso-scale A, that is

ony on, 0w
E Vk87 = C(nk), where Vg = Ok

» In stationary conditions transport and collision integral
contributions in the kinetic equation balance each other

Vik. 1

A Tk

C

» Assuming small deviations from local equilibrium and small
ks, a direct analytical calculation yields

T~ kT3 for k<1l = ke~ AT35 A 7310
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Conclusions

» For small N the FPUT model exhibits a very long
thermalisation time due to the (almost) absence of
interactions between the modes of the system (tey o< 1/€® for
a-FPUT, teq ox 1/€* for 3-FPUT)

» for large N the nonlinear broadening is large enough and the
effective KE has 4-wave interactions, where still long waves
almost do not interact if the system is finite

P a separation of ballistic and diffusive scales, confirmed in
deterministic simulations of 3-FPUT by averaging over a
mesoscale A & v/N, explains the anomalous diffusion without
the need to invoke super-diffusion

> the separation scale can be estimated as ke ~ \73/% ~ [~3/10
using the non-homogenous 4-wave KE
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» analysis of the anomalous conduction as a superposition of ballistic
and diffusive modes in the meso-scopic framework [work in
progress!]

P accurate characterisation of the transport properties vs.
temperature (and other eventual conserved quantities)

» derivation of the macroscopic model without fractional diffusion
Thanks for your attention!
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