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EQUILIBRIUM AND NON-EQUILIBRIUM DESCRIPTION OF
NEGATIVE TEMPERATURE STATES IN A ONE-DIMENSIONAL
LATTICE USING A WAVE KINETIC APPROACH

" Negative temperature states

" Discrete nonlinear Schroedinger model (DNLS)
" Wave interaction and turbulence theory

" Our results and conclusions



HOW WE DEFINE TEMPERATURE?

" In a non-interactive (ideal) gas, the temperature is
proportional to the macroscopic average of the kinetic

energies of the gas components

" Formally, temperature is only defined at equilibrium, that is
for a classical gas when the Maxwell-Boltzmann distribution

is reached

- At equilibrium, the energy per particle is £, = naka

" In statistical mechanics temperature is more generally
defined as
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HOW WE DEFINE TEMPERATURE?

" Usually, entropy is a monotonic growing function vs. energy
and higher energies corresponds to higher temperatures

" Some peculiar systems shows entropy decreasing after
reaching a global maximum

8 N\ _9_._S_:o T=co
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" Negative temperature states are thus “hotter states” as
temperature first grows to infinity before becoming negative



SYSTEMS POSSESSING NEGATIVE TEMPERATURES

Non-interacting spin chain, E = (N, — N_) uB
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A Nuclear Spin System at Negative Temperature

E. M. PurceLL AND R, V., Pouxp
Department of Physics, Harvard University, Cambridge, Massachusetts
November 1, 1950

FIG. 1. A typical record of the reversed nuclear magnetization. On the [PU rce” & Pound, PhYSicaI ReVieW 8 I ’ I 95 I ]

left is a deflection characteristic of the normal state at equilibrium mag-
netization (T = 300°K), followed by the reversed deflection (T' = —350°K),
decaying (T — — =) through zero deflection (T = ») to the initial equi-
librium state.



SYSTEMS POSSESSING NEGATIVE TEMPERATURES

Confined point vortex model -
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[Onsager, Il Nuovo Cimento 6, 1949] OD -

Evolution of large-scale flow Giant vortex clusters in a
from turbulence in a two-dimensional quantum fluid
two-dimensional superfluid Crlame G Mt T Ko ot Y o . B

Matthew J. Davis?, Tyler W. Neely't
Shaun P. Johnstone'*, Andrew J. Groszek't, Philip T. Starkey’,
Christopher J. Billington™2, Tapio P. Simula'f, Kristian Helmerson'>*

[Johnstone et al., Science 364, 2019] [Gauthier et al., Science 364,2019]



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

Jdy,

T (Va1 + Wt = 203) + 01, P9, =0, m=1,... M

y,, is the complex amplitude of the oscillator at site m
two conserved quantities

M
1
2 4
H = Z <|l//m+1 _l//ml —EV|V/| > , energy
m=1
M
N = Z |y/|2, wave-action
m=1

(local) discretisation of the continuous one-dimensional NLS

model 10y + Viy+ 1] l//\zl// = (0, but it is not an integrable
model



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

dy
l dtm F (Wt + Wt = 205) + 01, Py, =0, m=1,..M

DNLS is a very good model, in the limit of tight-binding
approximation, for

" lossless optical wave guide
arrays

" Bose-Einstein condensates
in optical traps

DNLS is also a qualitatively good model
to describe some phenomena observed
in photo refractive crystals

[Kevrekidis The Discrete Nonlinear Schroedinger Equation, 2009]



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

Assuming periodic boundary conditions, and introducing discrete Fourier
direct and inverse transforms

u M
A / ~ 1 .
W, = E l/jkeZZﬂkm/M and r, = M 2 : W e i12mkm/M

m=1 m=1

the DNLS becomes in Fourier space
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where the dispersion relation is

w, =4 sin’(zk/M)
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and the Kronecker’s 51% = O t+k, ki+k, accounts for the Umklapp
scattering processes, that is k; + k,, ks + k;, mod M



THE WAVE INTERACTION/TURBULENCE APPROACH

Wave turbulence (WT) theory is a statistical mechanics approach to
weakly dispersive wave systems (waves in optics, plasma, ocean,

Bose-Einstein condensates)
[Nazarenko,Wave Turbulence, 201 1]

The (large time) efficient energy transfer in the system goes only
trough exact resonant n-wave interaction processes satisfying

(resonant manifold)




WT IN DNLS (ACTION-ANGLE VARIABLES)

dy,
i— = = @, ~ v D, Vs

ky,ks,ky

Writing @, = \/Tke_mk in action-angle variables

N _ 2w Y LD sin (A7) 57
” ey hey e ey 12/ €12
ey Ky ke
dé’k L LI
— 2 "3 "4 34\ <34
— =, —V Z 7 COS (Aé’lz) 0;5
ko ke ks ki

where Aelz — 91 + 92 — 93 — 64



WT IN DNLS (M — oo AND KINETIC EQUATION)

uniformly distributed 6, € [0,27)
Consider weakly nonlinear limit, thatis |v| < 1

At a large time-scale 7

dnkl ) 2 1 1 1 1
— =4 n, g, 1y, 1Ny, |
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Where Aa)12 — 601 + 602 — 603 — 0)4,
k € [0,27] and w, = 4 sin*(k/2)

[Onorato & Dematteis, JPC 4,2020]

Statistical approach, averaging over realisations having phases

First non zero moment is the wave-action density 7,(f) « (/)
Take the thermodynamic (large box) limit M — oo and |




WT IN DNLS (M — oo AND KINETIC EQUATION)

" 4-wave interactions

>

resonant manifold given by

=0 mod 2« 3

_a)4=0
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Where Aa)12 — 601 + 602 — 603 — 604,
k € [0,27] and w, = 4 sin*(k/2)

[Onorato & Dematteis, JPC 4,2020]




WT IN DNLS (TAKING THE THERMODYNAMIC LIMIT)

1

dt

= 4712

" Two invariants

" KE is time-irreversible as, given the entropy S() =
an H-theorem dS/dt > 0O holds
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" The equilibrium is the Rayleigh-Jeans distribution (7’ )
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with f=1/T,y = u/T



RJ AND NEGATIVE TEMPERATURE STATES
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Play with 7 and u to
have negative
temperatures, 7' < 0,
but still a positive-
defined distribution
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with B=1/T,y = u/T
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FIG. 1. Spectral energy density e(k) = w(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to 7' =1 and
n = 0; the green line corresponds to 7' =1 and u© = —0.1 and the
black line (sharply peaked around k& = 7) corresponds to negative
temperatures, i.e., T = —0.5 and u = 5. All these curves are exact
stationary solutions of the WK equation.



LINKING INTENSIVE AND EXTENSIVE QUANTITIES
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, one can obtain

Given the R] distribution n]ERJ) =

(E.N) = dr(E — 2N)
PE.N) = E(E — 4N)

(E.N) = 2rE 7
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S(E.N) = 2z1n

FIG. 3. The entropy, S, as a function of the energy, E, for N = 1.
The derivative of § is the inverse of the temperature. For E > 2N=2
the derivative is negative, implying a negative temperature. Note that
entropy is defined for 0 < E < 4N.



LINKING INTENSIVE AND EXTENSIVE QUANTITIES

E =

Given the R| distribution n

PE,N) =

y(E,N) =

S(E.N) = 2z1n
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DIRECT NUMERICAL SIMULATIONS OF THE DNLS
MODEL

dy,,

2
l7+ (Wm+1+l//m—1 —21//m> +I/|Wm| l//m=0, m=1,.. M

~ Can we obtain negative temperature states!

" Are the predictions of the wave kinetic
equation accurate!



DIRECT NUMERICAL SIMULATIONS OF THE DNLS
MODEL

dWm 2
l7+ (Wm+1+l//m—1 —Zlﬂm> +I/|Wm| l//m:(), m = 1,...,M

"~ Solve DNLS using a standard forth-order RK
algorithm that preserves (sufficiently well) the
conserved quantities for large time-scales

"~ Average over |,000 realisations initialised with
the same spectral density but phases randomly

distributed 6, € [0,27)



NUMERICAL RESULTS: RJ EQUILIBRIUM

initial wave-action distribution

—[(k — ko) Ak]?

202

n, =B+ Aexp

with 0 =09, A=2, B=0, Ak =2n/M, M =512, and
ko = M/2. With this choice E =) winiyAk = 18.80 and
N =) ni Ak = 5.63; therefore 2N < E < 4N which cor-
responds to T = —0.74 and u = 4.16, i.e., negative tem-
peratures. One thousand realizations of the same spectrum
(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
the ensemble. The nonlinear parameter v was set to 0.03. In
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FIG. 4. Energy density as a function of wave number for a simu-
lation of the DNLS equation characterized by the initial condition
in (30) that corresponds to 7 = —0.74 and u = 4.16. Note that,
because of the conservation of energy and number of particles,
temperature and chemical potential do not change in time [44,45].
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NUMERICAL RESULTS: FLUCTUATIONS

The WT theory also allows to derive higher order moments of the
angle-action variables, for example the second moment A, (I,g)

Wy =4n, & —2y. A, with
dr 17K1 1m K
" 2T
fkl — 47”/2 nkznk3nk45 (ACOIBSL ) 513;1 dk2dk3dk4
N "2
T, = — 4w 0 (1, = i, = 1,1 ) (Awiy) Sy dkdksdky

One can check that if A (1) =2 nkz(t), then the top equation is always

satisfied provided that n,(7) follows the KE described before. One
can then test this relation!



NUMERICAL RESULTS: FLUCTUATIONS

>0 A(k=r)
2 n(k=n)? " We tested it for the

1 mode k = 7 in the
30| negative temperature
I ol ] regime
< 20 I ﬁ?\ 1~ The higher-order

07 : moment (/;) starts to
Pl 6/ . 4 follow the kinetic theory
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One can check that if A (1) = 2n,3(t), then the top equation is always

satisfied provided that n,(7) follows the KE described before. One
can then test this relation!



NUMERICAL RESULTS: FLUCTUATIONS

" We tested it for the
mode k = & in the
negative temperature
regime

" The pdf starts to follow
the kinetic theory
(Rayleigh distributed

' according to an

(k=) exponential) at very

short time-scale

FIG. 6. Probability density function of /(k = ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].

Another way of testing how quickly the microscopic dynamics
approaches the kinetic dynamics is to measure the probability
density function of the fluctuations



CONCLUSIONS

Ay 2
17;"+ (l//m_,_1+l//m_1 —21//m) +viy, "y, =0, m=1,....M

" Negative temperatures are possible in DNLS due to the (i) upper
bound of the dispersion relation and (ii) the fact that the system
conserves two quantities

" Relations between intensive and extensive quantities can be
found in a closed form for DNLS

" Negative temperature states are not so exotic, as their dynamics
is very well described (in the weakly nonlinear limit) by WT
kinetic theory as well as standard positive temperature states

" Our conclusions are likely to be valid to any other dispersive
wave system characterised by 4-wave interactions where the
dispersion relation is bounded from above
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CONCLUSIONS

dy,,
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Any experimental realisation!?

Negative Absolute Temperature for
Motional Degrees of Freedom

S. Braun,*? . P. Ronzheimer,™? M. Schreiber,™? S. S. Hodgman,*? T. Rom,*?
. Bloch,*? U. Schneider®?*

the Bose-Hubbard Hamiltonian (72)
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[Braun et al., Science 339, 2013]
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