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FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1)
the turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized
vortices are considered, the quantum of circulation " can be used to formulate an extra length scale.
Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be

δ±(t) = A±ξ 1−2α± |"(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after
(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting
filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of
the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases
the approach and separation rates follow the same dimensional t1/2 scaling. For each event we
estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic
mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight
deviations are observed in some cases. Perhaps this fact could explain the different results for
the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after
the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and
α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on
the initial vortex filament configuration. In these works the time asymmetry was interpreted as a
manifestation of the irreversible dynamics due to sound emission; we will return to this interesting
point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex
distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate
sound at all scales) and no asymmetry concerning the exponent is observed.

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with
respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating
the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity
but are not universal. Moreover, we observe that the vortex filaments usually separate faster than
they approach (A− ! A+).
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HOW WE DEFINE TEMPERATURE?

‣ In statistical mechanics temperature is more generally 
defined as

‣ In a non-interactive (ideal) gas, the temperature is 
proportional to the macroscopic average of the kinetic 
energies of the gas components 

‣ Formally, temperature is only defined at equilibrium, that is 
for a classical gas when the Maxwell-Boltzmann distribution 
is reached

‣ At equilibrium, the energy per particle is Ep = n
1
2

kbT
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HOW WE DEFINE TEMPERATURE?

‣ Negative temperature states are thus “hotter states” as 
temperature first grows to infinity before becoming negative

‣ Usually, entropy is a monotonic growing function vs. energy 
and higher energies corresponds to higher temperatures

‣ Some peculiar systems shows entropy decreasing after 
reaching a global maximum
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SYSTEMS POSSESSING NEGATIVE TEMPERATURES

[Purcell & Pound, Physical Review 81, 1951]
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FIG. 2. Relaxation time constant as a function of magnetic
field for Lir in LiF.

concerned and the reduction in the energy of the photons emitted
and absorbed.
Therefore, when one of us (R.V.P.)s discovered the long relaxa-

tion time of a pure single crystal of LiF, it was suggested by the
other (N.F.R.) that such long relaxation times make possible a
new nuclear magnetic resonance technique which would have high
sensitivity at low frequencies of the oscillating magnetic 6eld.
%'ith the new method, the crystal is removed from a strong mag-
netic field for a time short compared to the relaxation time of the
crystal in the absence of a strong field (15 sec for LiF) and during
this short time is placed in a weak audiofrequency magnetic
6eld. For one isotope of the crystal, the ratio of the nuclear mag-
netization immediately before and immediately after the removal
from the strong field is measured' with a radiofrequency spec-
trometer. This ratio is then observed as a function of the frequency
of the audio-oscillator. The dependence of this ratio on the audio-
oscillator frequency presumably arises from resonant heating of
the nuclear spin system to a temperature above the low value
attained by adiabatic demagnetization when the crystal is re-
moved from the strong magnetic field.
In this way the audiofrequency spectrum of LiF was studied

between 20 and 200,000 cycles/sec with the strong 6eld (6376
gauss) observations being of the Li' resonance. Kith audio-
frequency magnetic fields of about 0.2 gauss, it was found that
resonant heating did not take place below 100 cycles but did occur
continuously and completely at frequencies between 1000 cycles
and 200,000 cycles. However, when the amplitude of the audio-
frequency field was reduced to 0.018 gauss applied for 3 sec,
a nuclear audiofrequency spectrum was observed which possessed
a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency
spectrum of LiF was its indication that the magnetic field reversal
in the negative temperature experiments described in an accom-
panying paper' must be accomplished in a time short compared
to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent
values of the magnetic 6eld between 0 and 42 gauss in the upper
curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve
correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close
agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~
respectively. The reduction of the subsequent Li7 magnetization
by an oscillatory field appropriate to F"indicates that during or
subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.
The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance
by a factor of two is plotted as a function of the strength of the
weak magnetic 6eld in which the sample is stored.
I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).

A Nuclear Spin System at Negative Temperature
E. M. PURCEI.L AND R. V. POUND

Department of Physics, Harvard Uwieersity, Cambridge, Massachusetts
November 1, 1950

A NUMBER of special experiments have been performed with
a crystal of LiF which, as reported previously, ' had long

relaxation times both in a strong field and in the earth's 6eld.
These experiments were designed to discover the conditions deter-
mining the sense of remagnetization by a strong field when the
initially magnetized crystal was put for a brief interval in the
earth's field.
At field strengths allowing the system to be described by its

net magnetic moment and angular momentum, a suKciently rapid
reversal of the direction of the magnetic 6eld should result in a
magnetization opposed to the new sense of the 6eld. The reversal
must occur in such a way that the time spent below a minimum
effective 6eld is so small compared to the period of the Larmor
precession that the system cannot follow the change adiabatically.
The experiments in zero 6eld reported above' showed a zero field
resonance at about 50 kc and therefore the following experiment
was tried.
The crystal, initially at equilibrium magnetization in the strong

(6376 gauss) field, was quickly removed, through the earth' s
field, and placed inside a small solenoid, the axis of which was

FIG. 1. A typical record of the reversed nuclear magnetization. On the
left is a deflection characteristic of the normal state at equilibrium mag-
netization (T=300'K), followed by the reversed deflection (T= -350'K),
decaying (T-+—~) through *ero deflection (T = ~) to the initial equi-
librium state.
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attained by adiabatic demagnetization when the crystal is re-
moved from the strong magnetic field.
In this way the audiofrequency spectrum of LiF was studied
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gauss) observations being of the Li' resonance. Kith audio-
frequency magnetic fields of about 0.2 gauss, it was found that
resonant heating did not take place below 100 cycles but did occur
continuously and completely at frequencies between 1000 cycles
and 200,000 cycles. However, when the amplitude of the audio-
frequency field was reduced to 0.018 gauss applied for 3 sec,
a nuclear audiofrequency spectrum was observed which possessed
a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency
spectrum of LiF was its indication that the magnetic field reversal
in the negative temperature experiments described in an accom-
panying paper' must be accomplished in a time short compared
to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent
values of the magnetic 6eld between 0 and 42 gauss in the upper
curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve
correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close
agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~
respectively. The reduction of the subsequent Li7 magnetization
by an oscillatory field appropriate to F"indicates that during or
subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.
The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance
by a factor of two is plotted as a function of the strength of the
weak magnetic 6eld in which the sample is stored.
I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).
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Non-interacting spin chain, E = (N+ − N−) μB
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N+ = 0, N− = N
S = ln(Ω = 1) = 0, E = Emin

N+ = 1, N− = N − 1
S = ln(Ω = N), E > Emin

N+ = N, N−0
S = ln(Ω = 1) = 0, E = Emax



SYSTEMS POSSESSING NEGATIVE TEMPERATURES

[Onsager, Il Nuovo Cimento 6, 1949]

SUPPLEMENTO AL VOLUME Vl, SERIE IX DEL NUOVO CIMJENTO N. 2, 1949 

X I I I .  

Statistical Hydrodynamics. (*) 

L .  O N S A G E I r  

New Haven, Conn. 

I t  is a fami l i a r  fac t  of hydrodynamics ,  than  when the (( :Reynolds n u m b e r ,  
exceeds a cer ta in  crit ical value, which depends on the  type  of flow, no s t eady  
flow is stable.  The uns t eady  flow which occurs under  these conditions calls 
for s ta t is t ical  ana lys is ;  bu t  ear ly  a t t e m p t s  in this direct ion encountered  for- 
midable  difficulties. Within  the las t  few years,  however ,  the  mos t  i m p o r t a n t  
remain ing  questions concerning the  s tab i l i ty  of l amina r  flow were set t led b y  
C. C. LI~  [1], and  a promis ing  s t a r t  towards  a quan t i t a t ive  theory  of tu rbu-  
lence was achieved b y  KOL:MOGOROFF [2]. :For good measure ,  KOLMOGO~OFF'S 
main result  was rediscovered at  least  twice [3], [4]. The theories  involved deal 
wi th  the  mechan i sm of tu rbu len t  dissipation.  We shall r e tu rn  to this subjec t ;  
i t  seems logical to discuss first a different,  new appl ica t ion  of s tat is t ics  to 
hydrodynamics .  

Ergodic Motion of Parallel Vortices. 

The fo rma t ion  of large,  isolated vort ices is an e x t r e m e l y  common,  ye t  
spectacular  phenomenon  in uns t eady  flow. I t s  ub iqu i ty  suggests an expla~- 
na t ion  on s ta t i s t ica l  grounds.  

To tha t  end,  we consider n paral le l  vort ices of intensi t ies  (circulations) 
k l ,  . . . ,  k ,  in an incompressible,  frictionless fluid. This essent ial ly  two-d imen-  
sional sys tem is Hami l ton i an  and  has bu t  a finite n u m b e r  (n) of degrees of  
freedom~ so t h a t  we can app ly  the  s t anda rd  methods  of s tat is t ieM mechanics .  
The equat ions of mot ion  m a y  be wr i t t en  in the fo rm 

k idx i / d t  =- ~H/~y t  , 
(1) 

t k, dy,/dt = - -  ~H/~x,, 

where t denotes  the  t i m e  and H is the  energy  in tegra l ;  the  infinite self-energy 

(*) This paper was read on May 20th afternoon. [Editor's note.] 

QUANTUM FLUIDS

Giant vortex clusters in a
two-dimensional quantum fluid
Guillaume Gauthier1*, Matthew T. Reeves2*, Xiaoquan Yu3, Ashton S. Bradley3,
Mark A. Baker1, Thomas A. Bell1, Halina Rubinsztein-Dunlop1,
Matthew J. Davis2, Tyler W. Neely1†

Adding energy to a system through transient stirring usually leads to more disorder.
In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder
above a certain energy, forming persistent vortex clusters. In this study, we experimentally
realize these vortex clusters in a planar superfluid: a 87Rb Bose-Einstein condensate
confined to an elliptical geometry. We demonstrate that the clusters persist for long
time periods, maintaining the superfluid system in a high-energy state far from global
equilibrium. Our experiments explore a regime of vortex matter at negative absolute
temperatures and have relevance for the dynamics of topological defects, two-dimensional
turbulence, and systems such as helium films, nonlinear optical materials, fermion
superfluids, and quark-gluon plasmas.

A
n isolated system that is initially stirred
will in most cases eventually achieve qui-
escent thermodynamic equilibrium. How-
ever, in some systems, the near decoupling
of particular degrees of freedom can result

in an isolated subsystem with a different time
scale for equilibration (1). The subsystem can ex-
hibit highly correlated and nonuniform thermal
equilibria (2–4). As recognized by Lars Onsager
(4), a prototypical example is a system ofN point
vortices (5) contained within a bounded two-
dimensional (2D) fluid. This model predicts that,
given sufficient decoupling between 2D and 3D
flow and negligible viscous dissipation, high-
energy fluid flow yields low-entropy equilibria
that exhibit large-scale aggregations of like-
circulation vortices (4). This is markedly differ-
ent than the behavior of vortices in 3D fluids
(6, 7). Onsager’s theory has provided some under-
standing of diverse classical quasi-2D systems
such as turbulent soap films (8), guiding-center
plasmas (9), self-gravitating systems (10), and
Jupiter’s Great Red Spot (11). However, quanti-
tative demonstration of point-vortex statistical
mechanics is challenging; although the dynam-
ics in 2D classical fluids can lead to vortex cluster
growth, these vortices are continuous and cannot
be realisticallymodeled by discrete points (12, 13).
Onsager was aware of this limitation and noted
the model would be more realistic for 2D super-
fluids, where vortices are discrete, with circula-

tions constrained toG =±h/m, where h is Planck’s
constant andm is the mass of a superfluid par-
ticle. The physical realization of high-energy
point-vortex clusters in any fluid systemhas, how-
ever, remained elusive.
The incompressible kinetic energy of an iso-

lated 2D fluid containing N point vortices can
be expressed in terms of the relative vortex posi-
tions (5). In an unbounded uniform fluid, it has
the form

H ¼ " r0
4p

X

i≠j
GiGj ln

ri " rj
x

!!!!

!!!! ð1Þ

where r0 is the 2D fluid density, x is a short-
range cutoff scale, and Gi is the circulation of a
vortex at position ri; the sign of Gi indicates the
direction of rotation. Onsager’s key insight was
that, because Eq. 1 is determined by the positions
ri, the available phase space for a confined fluid
becomes bounded by the area of the container
(4). This property dramatically alters the system’s
thermodynamic behavior.
The equilibrium phases of a neutralN-vortex

system in a bounded elliptical region are shown
schematically in Fig. 1, A to D. Thermodynamic
equilibria maximize the entropy (Fig. 1E), given
by S(E) = kBlnW(E), where the density of states

W ðEÞ ¼ x"2N ∫∏
N

i
d2ri d

"
E "HðfrigÞ

#
measures

the number of possible vortex configurations
at a given energy E (14); kB is Boltzmann’s con-
stant. The vortex temperature (Fig. 1F) is given
by T ¼ ð@S=@EÞ"1 . The low-energy, positive-
temperature phase (T > 0) consists of bound
vortex-antivortex pairs (Fig. 1A). As the energy
increases, these pairs unbind (15), increasing the
average nearest-neighbor distance ‘ (Fig. 1E),
until the vortex distribution becomes completely
disordered (Fig. 1B), marking the point of max-
imum entropy (T = ∞). However, owing to the

bounded phase space, this point occurs at finite
energy Em; at still higher energies, vortices re-
order into same-sign clusters (2, 4), thus decreas-
ing the entropy and yielding negative absolute
temperatures (T<0). At a sufficiently high energy,
the system undergoes a clustering transition (T =
Tc) (16); here, the vortices begin to polarize into
two giant clusters of same-circulation vortices
(Fig. 1C), whose structures are determined by the
shape of the container. Themajor-axis projection
of the dipole moment,D ¼ N"1jP

j
sgnðGjÞxjj,

serves as an order parameter for the cluster-
ing transition (14); below the transition D = 0,
whereas above the transition it begins to grow
asDº (E – Ec)

1/2 (Fig. 1F) (16). Finally, in the so-
called supercondensation limit x → 0, E → ∞,
the clusters shrink to two separated points (Fig.
1D). Here, the temperature approaches the limit-
ing supercondensate temperature Ts, which is
independent of geometry (17), and the dipole
moment approaches amaximumDs, determined
by the geometry. In a superfluid, the cutoff scale
x is provided by the superfluid healing length;
vortex-core repulsion at lengths ~x prevents
the eventual point collapse at infinite energy by
enforcing an upper energy limitwith aminimum
entropy (14).
To physically realize this idealized model, the

vorticesmust form awell-isolated subsystem and
effectively decouple from the other fluid degrees
of freedom. A large and uniform 2DBose-Einstein
condensate (BEC), near zero temperature with
weak vortex-sound coupling, has been proposed
as a suitable candidate system (18–21). Further-
more, superfluids allow for vortex-antivortex
annihilation, which favors the formation of
Onsager vortices through evaporative heating
(20, 22), whereby annihilations remove low-
energy dipoles, thus increasing the remaining
energy per vortex. However, although small tran-
sient clusters have been observed in BEC (23–25),
attempts to create Onsager’s vortex clusters have
thus far beenhindered by thermal dissipation and
vortex losses at boundaries (26), which are en-
hanced by fluid inhomogeneities (27). This has
prevented the experimental study of the full phase
diagram of 2D vortex matter shown in Fig. 1.
We overcome these issues by working with a

uniform planar 87Rb BEC confined to an ellipti-
cal geometry (14). Although the BEC itself is
three-dimensional, the vortex dynamics are
two-dimensional owing to the large energy cost
of vortex bending (14, 28). By engineering differ-
ent stirring potentials, we can efficiently inject
vortex configurations with minimal sound exci-
tation (14). A high-energy vortex configuration
canbe injectedusing adouble-paddle stir, whereby
two narrow potential barriers (29, 30) are swept
along the edges of the trap (Fig. 2A). Because of
the broken symmetry of the ellipse, themaximum
entropy state is a vortex dipole separated along
the major axis (31). The stirring protocol is well
mode-matched to this vorticity distribution, and
we find that the vortices rapidly organize into
two Onsager vortex clusters (Fig. 2B).
We contrast these results with the injection

of a low-energy configuration from sweeping
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QUANTUM FLUIDS

Evolution of large-scale flow
from turbulence in a
two-dimensional superfluid
Shaun P. Johnstone1*, Andrew J. Groszek1†, Philip T. Starkey1,
Christopher J. Billington1,2, Tapio P. Simula1‡, Kristian Helmerson1,3*

Nonequilibrium interacting systems can evolve to exhibit large-scale structure and
order. In two-dimensional turbulent flow, the seemingly random swirling motion
of a fluid can evolve toward persistent large-scale vortices. To explain such behavior,
Lars Onsager proposed a statistical hydrodynamic model based on quantized
vortices. Here, we report on the experimental confirmation of Onsager’s model.
We dragged a grid barrier through an oblate superfluid Bose–Einstein condensate
to generate nonequilibrium distributions of vortices. We observed signatures of
an inverse energy cascade driven by the evaporative heating of vortices, leading
to steady-state configurations characterized by negative absolute temperatures.
Our results open a pathway for quantitative studies of emergent structures in
interacting quantum systems driven far from equilibrium.

S
tatistical mechanics provides a description
of the thermodynamic equilibrium behav-
ior of a system of many interacting par-
ticles that individually exhibit seemingly
random thermal motion. The system can

be taken out of equilibrium by the input of en-
ergy, but in isolation is expected to relax back to
statistical equilibrium, a process accompanied by
an increase in the entropy or randomness of the
system. In some situations, however, the system
can exhibit a steady-state collectivemotion of the
constituent particles, corresponding to statistical
equilibrium in a highly excited state. Examples of
such behavior can be found in systems ranging
from the flocking of birds (1) to labor producti-
vity (2) and turbulence in two-dimensional (2D)
flow. Turbulence is considered a quintessential
example of a system driven far from equilibrium.
In hydrodynamic turbulence, the kinetic energy of
the fluid is transported without loss across many
length scales. However, despite the complexity of
the phenomenon, there are some statistical theo-
ries that describe the steady-state behavior of
turbulent systems, such as Kolmogorov’s power-
law scaling of energy flow (3). In 3D turbulence, a
process known as a Richardson cascade (4) re-
sults in energy transport to ever smaller length
scales, causing vortices to break up over time and

the system to appear chaotic. Remarkably, re-
stricting the fluid dynamics to 2D results in an
inverse-cascade process: energy flows toward the
largest length scales available, resulting in system-
scale, persistent vortex flows (5). This behavior
has been observed in systems ranging in scale
from soap films (6) to Jupiter’s atmosphere (7, 8).
Onsager proposed an explanation for the ap-

pearance of large-scale vortex flow in 2D tur-
bulence in terms of equilibrium statistical
mechanics of amodel of quantized point vortices
(9), noting its applicability to superfluids. He
assigned an absolute temperature T to the point
vortex system as 1=T ¼ @S=@E ≡ kBb, where S is
the Boltzmann entropy of the vortex configura-
tion corresponding to the logarithm of the num-
ber of possible vortex configurations that result
in a flow field with energy E, b is the inverse
temperature, and kB is the Boltzmann constant.
The lowest energies are produced by weak flows,
which correspond to low-entropy (ordered) states,
with b → ∞, in which vortices of opposite sign
pair up, whereas at higher energies, b → 0, the
vortices arrange into increasingly uncorrelated
(high-entropy) configurations. For a confined sys-
tem, however, the configuration space of vortices
is bounded, and Smust take amaximum value at
a finite energy E0. Onsager noted that for E > E0,
the absolute temperature will be negative be-
cause higher energies can only be obtained at
lower entropies—the vortices must becomemore
ordered, with like-sign vortices clustering to pro-
duce stronger flows. If energy is continuously
injected into a confined 2D flow, then eventually
large-scale compound “Onsager vortices” will be
the only remaining features, with b → –∞.
Negative absolute temperature states were

subsequently used to describe manufactured
distributions of nuclear spin systems (10) and,
more recently, motional degrees of freedom of
cold atoms in optical lattices (11). In these ex-

periments, changing spin states and the sign
of interatom interactions, respectively, resulted
in a forced population inversion with the re-
sulting state decaying to lower energy while
increasing its entropy. The vortex system de-
scribed by Onsager is markedly different from
the single-particle nuclear spin and optical lat-
tice experiments: energy is injected into the
system in a continuous manner and the inter-
actions of the constituent particles (vortices) re-
sult in a negative temperature configuration.
In a superfluid, 3Dquantum turbulence (3DQT),

which manifests as tangles of quantized vortex
lines, has been shown to exhibit a direct energy
cascade similar to its classical counterpart. The
statistical dynamics of 3DQT have been studied
over the past three decades both numerically and
experimentally in superfluid helium (12). More
recently, 3DQT has been observed in atomic Bose–
Einstein condensates (BECs) (13–15), where
direct imaging is possible owing to the compar-
atively large vortex cores (micrometer size versus
angstrom size in superfluid helium). In 2DQT, an
inverse energy cascade is predicted to result from
the preferential transport of the energy injected
into the superfluid through the creation of vortex–
antivortex pairs (16, 17). Because the vortices are
quantized, the spatial clustering of like-sign vor-
tices forms the equivalent of classical large-scale
flows, as in Onsager’s model. To date, however,
the major challenge hindering the understand-
ing of 2DQT has been to devise a method to
experimentally measure the velocity field of a
superfluid.
Atomic BECs provide an ideal system in which

2DQT can be realized, as they can be readily
trapped in highly oblate geometries, where the
dynamics of the vortices are restricted to a plane
(18–21). The emergence of persistent currents
has been observed in an annular BEC (19), and
the relaxation of turbulence has been investi-
gated via vortex number statistics (20). These
early experiments relied heavily on comparisons
to numerical simulations, as information about
the vortex circulation could not be obtained. This
provided motivation for developing new techni-
ques to probe 2DQT, such as multishot vortex
tracking (22, 23) and single-shot vortex sign de-
tection (21, 24). In the latter case, a velocity-
selective Bragg spectroscopy (25) technique was
utilized, allowing the sign and position of each
vortex (and hence the incompressible velocity
field) in a turbulent BEC to be determined (21).
However, the BECwas harmonically trapped and
therefore inhomogeneous, and the vortices pref-
erentially formed vortex–antivortex dipole pairs.
Indeed, numerical studies have indicated that
the uniformity of the BEC plays a major role in
the turbulent dynamics (26).
Here, we injected vortices into a uniform,

planar BEC by dragging a grid of elliptical ob-
stacles formed by an array of laser beams through
the atomic cloud (18) and observed the evolution
of the resulting states by identifying the sign and
location of each vortex in the BEC (21). Using
velocity-selective Bragg scattering, as imple-
mented in (21), we generated a map of the BEC,
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THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

‣  is the complex amplitude of the oscillator at site 
‣ two conserved quantities

ψm m

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

H =
M

∑
m=1

( |ψm+1 − ψm |2 −
1
2

ν |ψ |4 ) , energy

N =
M

∑
m=1

|ψ |2 , wave-action

‣ (local) discretisation of the continuous one-dimensional NLS 
model , but it is not an integrable 
model

i∂tψ + ∇2ψ + ν |ψ |2 ψ = 0



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

‣ lossless optical wave guide 
arrays

‣ Bose-Einstein condensates 
in optical traps

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

DNLS is a very good model, in the limit of tight-binding 
approximation, for

DNLS is also a qualitatively good model 
to describe some phenomena observed 
in photo refractive crystals

180 M.A. Porter

Fig. 8.3 (Right) Diagram of experimental setup for the creation of a photorefractive crystal lattice
with electro-optic anisotropy. (Left) Typical observation of the lattice at the terminal face of the
crystal. Each waveguide has a diameter of about 7 !m and is about 11 !m away from its nearest
neighbors. Reprinted with permission from Fig. 1 in [9]. Copyright 2003 by the Nature Publishing
Group

which experiences discrete diffraction (the optical equivalent of quantum tunnelling
in a periodic potential) and can form a discrete soliton provided the nonlinearity
is sufficiently large. The model for photorefractive crystals is a continuous NLS
equation with saturable nonlinearity [9],

iUz + Uxx + Uyy − E0

1 + Il + |U |2
U = 0 , (8.3)

where z is the propagation distance, (x, y) are transverse coordinates, U is the
slowly varying amplitude of the probe beam (normalized by the dark irradiance
of the crystal), and E0 is the applied dc field, and Il is a lattice intensity function.
For a square lattice, Il = I0 sin2{(x + y)/

√
2} sin2{(x − y)/

√
2}, where I0 is the lat-

tice’s peak intensity. DNLS equations have been enormously insightful in providing
corroborations between theoretical predictions and experimental observations (see,
in particular, the investigations of discrete vortices in [17, 18, 42]), although they
do not provide a prototypical model in this setting the way they do with waveguide
arrays.

For optical induction to work, it is essential that the interfering waves are un-
affected by the nonlinearity (to ensure that the “waveguides” are as uniform as
possible) but that the probe (soliton-forming) beam experiences a significant non-
linearity. This can be achieved by using a photorefractive material with a strong
electro-optic anisotropy. In such materials, coherent rays interfere with each other
and form a spatially varying pattern of illumination (because the local index of re-
fraction is modified, via the electro-optic effect, by spatial variations of the light
intensity). This causes ordinary polarized plane waves to propagate almost linearly
(i.e., with practically no diffraction) and extraordinary polarized waves to propagate
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Fig. 8.1 (Left) Experimental setup for the waveguide array experiments reported in [3]. (Right) Low-power (diffraction) versus high-power experiments. The
latter result in discrete spatial solitons. Reprinted from Figs. 2, 4, and 5 with permission from [3]. Copyright 1998 by the American Physical Society
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i!!t =
(

−!2∇2

2m
+ g0|!|2 + V(r)

)
! , (8.4)

where ! = !(r, t) is the condensate wave function (order parameter) normalized to
the number of atoms, V(r) is the external potential, and the effective self-interaction
parameter is g̃ = [4π!2a/m][1+ O(ζ 2)], where a is the two-body scattering length
and ζ ≡

√
|!|2|a|3 is the dilute gas parameter [55, 60, 61]. The cubic nonlinearity

arises from the nearly perfect contact (delta function) interaction between particles.
In a quasi-1D (“cigar-shaped”) BEC, the transverse dimensions are about equal

to the healing length, and the longitudinal dimension is much larger than the trans-
verse ones. One can then average (8.4) in the transverse plane to obtain the 1D GP
equation [55, 62],

i!ut = −
[ !2

2m

]
uxx + g|u|2u + V (x)u , (8.5)

where u, g, and V are, respectively, the rescaled 1D wave function, interaction pa-
rameter, and external trapping potential. The interatomic interactions in BECs are
determined by the sign of g: they are repulsive (producing a defocusing nonlinearity)
when g > 0 and attractive (producing a focusing nonlinearity) when g < 0.

BECs can be loaded into OL potentials (or superlattices, which are small-scale
lattices subjected to a large-scale modulation), which are created experimentally
as interference patterns of laser beams. Consider two identical laser beams with
parallel polarization and equal peak intensities, and counterpropagate them as in
Fig. 8.5a so that their cross sections overlap completely. The two beams create an
interference pattern with period d = λL/2 (half of the optical wavelength) equal
to the distance between consecutive maxima of the resulting light intensity. The
potential experienced by atoms in the BEC is then [21]

V (x) = V0 cos2
(πx

d

)
, (8.6)

where V0 is the lattice depth. See [21] for numerous additional details.

Fig. 8.5 Diagram of the creation of a 1D optical lattice potential using (a) counterpropagating
laser beams and (b) beams intersecting at an angle θ inducing a spacing d = λL cos(θ/2)/2. The
quantities kL and k′

L denote the wave vectors of the beams. The lattice period is given by the
distance d between consecutive maxima of light intensity in the interference pattern. Reprinted
with permission from Fig. 1 in [21]. Copyright 2006 by the American Physical Society

[Kevrekidis The Discrete Nonlinear Schroedinger Equation, 2009]



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

Assuming periodic boundary conditions, and introducing discrete Fourier 
direct and inverse transforms

i
dψ̂k1

dt
= ωk1

ψ̂k1
− ν ∑

k2,k3,k4

ψ̂*k2
ψk3

ψk4
δ34

12

ωk = 4 sin2(πk/M)

ψm =
M

∑
m=1

ψ̂kei2πkm/M and ψ̂k =
1
M

M

∑
m=1

ψme−i2πkm/M

the DNLS becomes in Fourier space

where the dispersion relation is

and the Kronecker’s  accounts for the Umklapp 
scattering processes, that is  

δ34
12 = δk1+k2,k3+k4

k1 + k2, k3 + k4 mod M

M = 16

1 2 3 4 5 6

1

2

3

4



THE WAVE INTERACTION/TURBULENCE APPROACH

Wave turbulence (WT) theory is a statistical mechanics approach to 
weakly dispersive wave systems (waves in optics, plasma, ocean, 
Bose-Einstein condensates)

[Nazarenko, Wave Turbulence, 2011]

The (large time) efficient energy transfer in the system goes only 
trough exact resonant n-wave interaction processes satisfying

k1 ± k2 ± …kn = 0
ω1 ± ω2 ± …ωn = 0 (resonant manifold)



WT IN DNLS (ACTION-ANGLE VARIABLES)

i
dψ̂k1

dt
= ωk1

ψ̂k1
− ν ∑

k2,k3,k4

ψ̂*k2
ψk3

ψk4
δ34

12

Writing  in action-angle variablesψ̂k = Ike−iθk

dIk1

dt
= − 2ν ∑

k2,k3,k4

Ik1
Ik2

Ik3
Ik4

sin (Δθ34
12) δ34

12

dθk1

dt
= ωk1

− ν ∑
k2,k3,k4

Ik2
Ik3

Ik4

Ik1

cos (Δθ34
12) δ34

12

where Δθ12 = θ1 + θ2 − θ3 − θ4



WT IN DNLS (  AND KINETIC EQUATION)M → ∞

dnk1

dτ
= 4πν2 ∫

2π

0
nk1

nk2
nk3

nk4 ( 1
nk1

+
1

nk2

−
1

nk3

−
1

nk4
)

δ (Δω34
12) δ34

12 dk2dk3dk4 ,

‣ Statistical approach, averaging over realisations having phases 
uniformly distributed 

‣ Consider weakly nonlinear limit, that is 
‣ First non zero moment is the wave-action density 
‣ Take the thermodynamic (large box) limit  and l
‣ At a large time-scale 

θk ∈ [0,2π)
|ν | ≪ 1

nk(t) ∝ ⟨Ik⟩
M → ∞

τ

where , 
 and 

Δω12 = ω1 + ω2 − ω3 − ω4
k ∈ [0,2π] ωk = 4 sin2(k/2)

1 2 3 4 5 6

1

2

3

4

M = 16 and
M → ∞

[Onorato & Dematteis, JPC 4, 2020]



WT IN DNLS (  AND KINETIC EQUATION)M → ∞

dnk1

dτ
= 4πν2 ∫

2π

0
nk1

nk2
nk3

nk4 ( 1
nk1

+
1

nk2

−
1

nk3

−
1

nk4
)

δ (Δω34
12) δ34

12 dk2dk3dk4 ,

where , 
 and 

Δω12 = ω1 + ω2 − ω3 − ω4
k ∈ [0,2π] ωk = 4 sin2(k/2)

1 2 3 4 5 6

1

2

3

4

M = 16 and
M → ∞

[Onorato & Dematteis, JPC 4, 2020]

k1 + k2 − k3 − k4 = 0 mod 2π
ω1 + ω2 − ω3 − ω4 = 0

‣ 4-wave interactions
‣ resonant manifold given by



WT IN DNLS (TAKING THE THERMODYNAMIC LIMIT)

‣ Two invariants

‣ KE is time-irreversible as, given the entropy                               
an H-theorem  holds

‣ The equilibrium is the Rayleigh-Jeans distribution 

dS/dt ≥ 0

(T, μ)

E = ∫
2π

0
ωk nk dk and N = ∫

2π

0
nk dk

n(RJ)
k =

T
ωk − μ

=
1

βωk − γ
with β = 1/T, γ = μ/T

dnk1

dτ
= 4πν2 ∫

2π

0
nk1

nk2
nk3

nk4 ( 1
nk1

+
1

nk2

−
1

nk3

−
1

nk4
)

δ (Δω34
12) δ34

12 dk2dk3dk4

S(t) = ∫
2π

0
ln nk(t) dk ,



RJ AND NEGATIVE TEMPERATURE STATES

n(RJ)
k =

T
ωk − μ

=
1

βωk − γ
with β = 1/T, γ = μ/T

EQUILIBRIUM AND NONEQUILIBRIUM DESCRIPTION OF … PHYSICAL REVIEW E 105, 014206 (2022)

FIG. 1. Spectral energy density e(k) = ω(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to T = 1 and
µ = 0; the green line corresponds to T = 1 and µ = −0.1 and the
black line (sharply peaked around k = π ) corresponds to negative
temperatures, i.e., T = −0.5 and µ = 5. All these curves are exact
stationary solutions of the WK equation.

Negative temperatures are characterized by a peaked dis-
tribution around k = π .

Besides mean values, the wave kinetic approach offers the
possibility to investigate the fluctuations and their relaxation
timescale. It can be checked by substitution that a nonsta-
tionary solution of Eq. (9) is #k (t ) = 2n2

k (t ), provided nk (t )
evolves according to (7). The understanding of the timescale
by which such a solution is approached is extremely interest-
ing. Because of their similar mathematical structures, one may
expect that Eqs. (7) and (9) evolve on the same timescale. As a
matter of fact, it will be shown in the numerical computations
that #k (t ) approaches 2n2

k (t ) on a much faster timescale than
the one pertaining to the evolution of nk . Indeed, assuming that
#k (t ) is characterized by two timescales, the longer one being
the same as the one for nk (t ), it is straightforward to show
from Eq. (9) that #k (t ) reaches 2nk (t )2 exponentially fast and
then it remains enslaved to it, as it tends to its asymptotic
value.

A. Equilibrium and thermodynamics

It is not obvious a priori to what extent the variables
used in the WK equation correspond to the ones appearing
in the first law of thermodynamics. Here we show that they
satisfy the equilibrium classical relation between T and S, i.e.,
T = (∂S/∂E )−1. Given the energy, E , the number of particles,
N , and S at equilibrium, i.e., for n(k, t ) = n(k)(RJ), we obtain
(similar integrals were calculated in Ref. [33] to study the
erosion of a discrete breather by a thermal bath):

E (γ ,β ) = 2π

β

(
1 + γ√

γ (γ − 4β )

)
,

N (γ ,β ) = 2π√
γ (γ − 4β )

, (14)

S(γ ,β ) = 2π ln
[

2
2β − γ +

√
γ (γ − 4β )

]
. (15)

FIG. 2. Energy, E , as a function of the number of particles, N .
The white region corresponds to nonaccessible energies, the light
blue to negative temperatures, and the red to positive temperatures.
The lines corresponding to 0+, 0−, and ±∞ temperatures are also
visible. T = 0− corresponds to E = 4N , T = ±∞ to E = 2N , and
T = 0+ to E = 0.

To express the entropy as a function of energy and number of
particles, S(E , N ), we invert the relations in (14):

β(E , N ) = 4π (E − 2N )
E (E − 4N )

, γ (E , N ) = 2πE
N (E − 4N )

. (16)

Knowing that γ = µ/T , the expression for the chemical po-
tential can be derived:

µ(E , N ) = E2

2(E − 2N )N
. (17)

A phase diagram with the energy as a function of number of
particles for fixed temperature can be easily built by solving
the first of Eqs. (16) for the energy to obtain:

E = 2N + 2πT − 2sgn[T ]
√

N2 + π2T 2. (18)

For T → 0+, we have E → 0; for T → 0−, we have E → 4N
from below; for T → ±∞, we get E → 2N .

Interestingly, since γ is always negative, there is an up-
per value for the energy for fixed number of particles, i.e.,
0 < E < 4N . Moreover, a positive β requires E < 2N . Then
negative values of β, i.e., negative temperatures, are possible
only for 2N < E < 4N . For positive temperatures, the chem-
ical potential is negative and becomes positive for negative
temperatures, with the constraint that µ > 4. These results are
shown in Fig. 2. Plugging Eqs. (16) into (15), we obtain:

S(E , N ) = 2π ln
[

E (4N − E )
8πN

]
, (19)

see also Ref. [30]. The entropy is defined for 0 < E < 4N ; it
is a continuous function of its arguments and it has an absolute
maximum at E = 2N . For fixed E and large N , there is a hor-
izontal asymptote at N = 2π ln[E/(2π )] which corresponds

014206-3

‣ Play with  and  to 
have negative 
temperatures, , 
but still a positive-
defined distribution

‣ energy density 
distribution 

T μ

T < 0

ek = ωk nk



LINKING INTENSIVE AND EXTENSIVE QUANTITIES

E = ∫
2π

0
ωk nk dk , N = ∫

2π

0
nk dk and S(t) = ∫

2π

0
ln nk(t) dk

β(E, N) =
4π(E − 2N)
E(E − 4N)

γ(E, N) =
2πE

N(E − 4N)

S(E, N) = 2π ln [ E(4N − E)
8πN ]

Given the RJ distribution , one can obtainn(RJ)
k =

1
βωk − γM. ONORATO et al. PHYSICAL REVIEW E 105, 014206 (2022)
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FIG. 3. The entropy, S, as a function of the energy, E , for N = 1.
The derivative of S is the inverse of the temperature. For E > 2N=2
the derivative is negative, implying a negative temperature. Note that
entropy is defined for 0 < E < 4N .

to γ = 0. In Fig. 3, we show the entropy as a function of the
energy E for N = 1.

The above description is consistent with the formalism of
classical thermodynamics; indeed, differentiating the entropy

dS(E , N ) =
(

∂S
∂E

)

N
dE +

(
∂S
∂N

)

E
dN (20)

and calculating the derivatives, it turns out that (∂S/∂E )N =
β and (∂S/∂N )E = −γ . This implies that the definition
of entropy and other variables in the WK equation at the
Rayleigh-Jeans equilibrium match the corresponding defini-
tions given in classical thermodynamics.

B. The Boltzmann entropy and its relation to the
nonequilibrium entropy defined in Eq. (11)

The Boltzmann entropy SB is proportional to the natural
logarithm of the number of possible microstates $ of a system
at fixed energy and number of particles:

SB = ln $. (21)

The strategy to compute $ is the following: We consider
$(N, H ) and take a two-dimensional Laplace transform to get
$(γ ,β ):

$(γ ,β ) =
∫ ∞

0
$(N, H )eγ N−βH dHdN. (22)

$(N, H ) can be calculated as

$(N, E ) =
∫ ∞

0
δ

(

N −
M∑

k=1

Ik

)

δ

(

E −
M∑

k=1

ωkIk

)
M∏

k=1

dIk,

(23)
where, consistently with our hypothesis related to the random
phases and the smallness of the nonlinearity, we have assumed
H # E , with E the harmonic energy density. We plug (23) into

(22) and use the property of the δ, so that

$(γ ,β ) =
∫ ∞

0
eγ

∑M
k=1 Ik−β

∑M
k=1 ωk Ik

M∏

k=1

dIk, (24)

which can be rewritten as:

$(γ ,β ) =
∫ ∞

0

M∏

k=1

eγ Ik−βωk Ik dIk . (25)

The dependence on Ik has been factorized and we can integrate
over Ik to get

$(γ ,β ) =
M∏

k=1

1
−γ + βωk

. (26)

We then play the usual trick of taking the exponential of a log

$(γ ,β ) = exp

[

ln
M∏

k=1

1
−γ + βωk

]

= exp

[
M∑

k=1

ln
1

−γ + βωk

]

. (27)

Now we take the large box limit M = 2π/(k → ∞ and using
the definition of the Boltzmann’s entropy SB = ln $ we get:

SB(γ ,β ) = ln $(γ ,β ) = M
2π

∫ 2π

0
ln

[
1

−γ + βωk

]
dk.

(28)
This formula, apart from the factor M/2π , is our entropy, see
Eq. (11) where n(k) has been taken at equilibrium.

III. DIRECT NUMERICAL SIMULATIONS OF THE DNLS
EQUATION.

The fact that the WK equation predicts the existence of
negative temperatures does not necessarily imply that the
DNLS equation at small nonlinearity displays stationary so-
lutions with T < 0, as the WK equation is formally derived
only in the limit of random phases and random amplitudes.
A direct numerical simulation of the deterministic equation of
motion is needed in order to establish whether the stationary
solutions of Eqs. (7) and (9) are compatible with the micro-
scopic dynamics.

The DNLS equation has been solved numerically using a
standard fourth-order Runge-Kutta method; the simulations
performed preserved the Hamiltonian and the number of par-
ticles up to four significant digits. The initial conditions are
provided in Fourier space; the complex amplitudes in physical
space are recovered using the discrete Fourier transform

ψm =
M∑

k=1

√
nk(k e(i2πkm/M )eiφk , (29)

where (k = 2π/M and φk are random phases distributed
uniformly in the [0, 2π ) interval. In order to observe nega-
tive temperature, we consider the following Gaussian-shaped
initial wave action spectral density function:

nk = B + A exp
{−[(k − k0)(k]2

(2σ 2)

}
(30)

014206-4



LINKING INTENSIVE AND EXTENSIVE QUANTITIES

E = ∫
2π

0
ωk nk dk , N = ∫

2π

0
nk dk and S(t) = ∫

2π

0
ln nk(t) dk

β(E, N) =
4π(E − 2N)
E(E − 4N)

γ(E, N) =
2πE

N(E − 4N)

S(E, N) = 2π ln [ E(4N − E)
8πN ]

Given the RJ distribution , one can obtainn(RJ)
k =

1
βωk − γ

EQUILIBRIUM AND NONEQUILIBRIUM DESCRIPTION OF … PHYSICAL REVIEW E 105, 014206 (2022)

FIG. 1. Spectral energy density e(k) = ω(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to T = 1 and
µ = 0; the green line corresponds to T = 1 and µ = −0.1 and the
black line (sharply peaked around k = π ) corresponds to negative
temperatures, i.e., T = −0.5 and µ = 5. All these curves are exact
stationary solutions of the WK equation.

Negative temperatures are characterized by a peaked dis-
tribution around k = π .

Besides mean values, the wave kinetic approach offers the
possibility to investigate the fluctuations and their relaxation
timescale. It can be checked by substitution that a nonsta-
tionary solution of Eq. (9) is #k (t ) = 2n2

k (t ), provided nk (t )
evolves according to (7). The understanding of the timescale
by which such a solution is approached is extremely interest-
ing. Because of their similar mathematical structures, one may
expect that Eqs. (7) and (9) evolve on the same timescale. As a
matter of fact, it will be shown in the numerical computations
that #k (t ) approaches 2n2

k (t ) on a much faster timescale than
the one pertaining to the evolution of nk . Indeed, assuming that
#k (t ) is characterized by two timescales, the longer one being
the same as the one for nk (t ), it is straightforward to show
from Eq. (9) that #k (t ) reaches 2nk (t )2 exponentially fast and
then it remains enslaved to it, as it tends to its asymptotic
value.

A. Equilibrium and thermodynamics

It is not obvious a priori to what extent the variables
used in the WK equation correspond to the ones appearing
in the first law of thermodynamics. Here we show that they
satisfy the equilibrium classical relation between T and S, i.e.,
T = (∂S/∂E )−1. Given the energy, E , the number of particles,
N , and S at equilibrium, i.e., for n(k, t ) = n(k)(RJ), we obtain
(similar integrals were calculated in Ref. [33] to study the
erosion of a discrete breather by a thermal bath):

E (γ ,β ) = 2π

β

(
1 + γ√

γ (γ − 4β )

)
,

N (γ ,β ) = 2π√
γ (γ − 4β )

, (14)

S(γ ,β ) = 2π ln
[

2
2β − γ +

√
γ (γ − 4β )

]
. (15)

FIG. 2. Energy, E , as a function of the number of particles, N .
The white region corresponds to nonaccessible energies, the light
blue to negative temperatures, and the red to positive temperatures.
The lines corresponding to 0+, 0−, and ±∞ temperatures are also
visible. T = 0− corresponds to E = 4N , T = ±∞ to E = 2N , and
T = 0+ to E = 0.

To express the entropy as a function of energy and number of
particles, S(E , N ), we invert the relations in (14):

β(E , N ) = 4π (E − 2N )
E (E − 4N )

, γ (E , N ) = 2πE
N (E − 4N )

. (16)

Knowing that γ = µ/T , the expression for the chemical po-
tential can be derived:

µ(E , N ) = E2

2(E − 2N )N
. (17)

A phase diagram with the energy as a function of number of
particles for fixed temperature can be easily built by solving
the first of Eqs. (16) for the energy to obtain:

E = 2N + 2πT − 2sgn[T ]
√

N2 + π2T 2. (18)

For T → 0+, we have E → 0; for T → 0−, we have E → 4N
from below; for T → ±∞, we get E → 2N .

Interestingly, since γ is always negative, there is an up-
per value for the energy for fixed number of particles, i.e.,
0 < E < 4N . Moreover, a positive β requires E < 2N . Then
negative values of β, i.e., negative temperatures, are possible
only for 2N < E < 4N . For positive temperatures, the chem-
ical potential is negative and becomes positive for negative
temperatures, with the constraint that µ > 4. These results are
shown in Fig. 2. Plugging Eqs. (16) into (15), we obtain:

S(E , N ) = 2π ln
[

E (4N − E )
8πN

]
, (19)

see also Ref. [30]. The entropy is defined for 0 < E < 4N ; it
is a continuous function of its arguments and it has an absolute
maximum at E = 2N . For fixed E and large N , there is a hor-
izontal asymptote at N = 2π ln[E/(2π )] which corresponds
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‣ Can we obtain negative temperature states?
‣ Are the predictions of the wave kinetic 

equation accurate?

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

DIRECT NUMERICAL SIMULATIONS OF THE DNLS 
MODEL



i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

DIRECT NUMERICAL SIMULATIONS OF THE DNLS 
MODEL

‣ Solve DNLS using a standard forth-order RK 
algorithm that preserves (sufficiently well) the 
conserved quantities for large time-scales

‣ Average over 1,000 realisations initialised with 
the same spectral density but phases randomly 
distributed θk ∈ [0,2π)



NUMERICAL RESULTS: RJ EQUILIBRIUM

nk = B + A exp { −[(k − k0)Δk]2

2σ2 }
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FIG. 4. Energy density as a function of wave number for a simu-
lation of the DNLS equation characterized by the initial condition
in (30) that corresponds to T = −0.74 and µ = 4.16. Note that,
because of the conservation of energy and number of particles,
temperature and chemical potential do not change in time [44,45].
The energy spectral density is the result of averaging over 1000
realizations characterized by different random phases. At the center
of the domain, from bottom to top, the curves refer to t = 0, t = 103,
t = 104, respectively, and the dark curve is the prediction from the
Rayleigh-Jeans distribution, Eq. (12). In the inset the entropy defined
in Eq. (11) as a function of time is displayed.

with σ = 0.9, A = 2, B = 0, "k = 2π/M, M = 512, and
k0 = M/2. With this choice E =

∑
ωknk"k = 18.80 and

N =
∑

nk"k = 5.63; therefore 2N < E < 4N which cor-
responds to T = −0.74 and µ = 4.16, i.e., negative tem-
peratures. One thousand realizations of the same spectrum
(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
the ensemble. The nonlinear parameter ν was set to 0.03. In
Fig. 4 we report the spectral energy density at time t = 0,
t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
the curves are almost indistinguishable, i.e., the long time
behavior of e(k) matches the theoretical RJ predictions. The
simulation was carried out up to time t = 105 and no fur-
ther changes in the energy-density spectrum were observed
(similar results have been obtained in Ref. [29]). Moreover,
we show in the inset of the figure the monotonicity of the
entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
temperatures. Concerning the fluctuations described by the
second moment, we show in Fig. 5 the evolution in time of
&k for k = π . The numerical results show that the prediction
of Eq. (9) is accurate: After a very quick relaxation to the
solution (shown in the inset), &k follows the evolution 2n2

k .
The probability density function of Ik is also reported in Fig. 6
for different times. The prediction based on the wave kinetic
approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.
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FIG. 5. Evolution in time of the second moment &(k = π , t ) in
light green. The solution of Eq. (9) &(k = π , t ) = 2n(k = π , t )2 is
shown in red. In the inset a zoom of the the early stages of the
evolution are also reported.

IV. DISCUSSION AND CONCLUSIONS

The notion of negative temperatures is well established
through some experimental results and theoretical arguments
and it is well known that it is strictly connected with the
existence of an upper bound for the energy. In our work we
have studied negative temperatures in a lattice starting from a
microscopic dynamics. The family of stationary equilibrium
solutions of the WK equation associated with the lattice dy-
namics are characterized by two parameters which play the
role of temperature and chemical potential. For most of the
systems in this framework the temperature is positive and
the chemical potential is negative. However, if the dispersion
relation is bounded from above, as in the case of the DNLS
equation, then the distribution of particles in wave numbers
can be positive also for negative temperatures and positive
chemical potential. This simple observation has allowed us
to carry out the calculation and express analytically T and
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FIG. 6. Probability density function of I (k = π ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].
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(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
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t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
the curves are almost indistinguishable, i.e., the long time
behavior of e(k) matches the theoretical RJ predictions. The
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ther changes in the energy-density spectrum were observed
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we show in the inset of the figure the monotonicity of the
entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
temperatures. Concerning the fluctuations described by the
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&k for k = π . The numerical results show that the prediction
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approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.

 0

 10

 20

 30

 40

 50

 0  2000  4000  6000  8000  10000

(k
=

)

t

(k= )

2 n(k= )2

 6
 8

 10
 12
 14
 16
 18

 0  10  20  30  40

FIG. 5. Evolution in time of the second moment &(k = π , t ) in
light green. The solution of Eq. (9) &(k = π , t ) = 2n(k = π , t )2 is
shown in red. In the inset a zoom of the the early stages of the
evolution are also reported.

IV. DISCUSSION AND CONCLUSIONS

The notion of negative temperatures is well established
through some experimental results and theoretical arguments
and it is well known that it is strictly connected with the
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t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
the curves are almost indistinguishable, i.e., the long time
behavior of e(k) matches the theoretical RJ predictions. The
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(similar results have been obtained in Ref. [29]). Moreover,
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entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
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S(t) = ⟨∫
2π

0
ln nk(t) dk⟩

ek = ⟨ωk nk⟩initial wave-action distribution



NUMERICAL RESULTS: FLUCTUATIONS

The WT theory also allows to derive higher order moments of the 
angle-action variables, for example the second moment Λk ∝ ⟨I2

k ⟩

dΛk1

dτ
= 4nk1

ξk1
− 2γk1

Λk1
with

ξk1
= 4πν2 ∫

2π

0
nk2

nk3
nk4

δ (Δω34
12) δ34

12dk2dk3dk4

γk1
= − 4πν2 ∫

2π

0
(nk3

nk4
− nk2

nk3
− nk2

nk4
)δ (Δω34

12) δ34
12dk2dk3dk4

One can check that if , then the top equation is always 
satisfied provided that  follows the KE described before. One 
can then test this relation!

Λk(t) = 2 n2
k (t)

nk(t)



NUMERICAL RESULTS: FLUCTUATIONS
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The probability density function of Ik is also reported in Fig. 6
for different times. The prediction based on the wave kinetic
approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.
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‣ We tested it for the 
mode  in the 
negative temperature 
regime

‣ The higher-order 
moment  starts to 
follow the kinetic theory 
at very short time-scale

k = π

⟨Ik⟩

One can check that if , then the top equation is always 
satisfied provided that  follows the KE described before. One 
can then test this relation!

Λk(t) = 2 n2
k (t)

nk(t)



NUMERICAL RESULTS: FLUCTUATIONS

Another way of testing how quickly the microscopic dynamics 
approaches the kinetic dynamics is to measure the probability 
density function of the fluctuations 

‣ We tested it for the 
mode  in the 
negative temperature 
regime

‣ The pdf starts to follow 
the kinetic theory 
(Rayleigh distributed 
according to an 
exponential) at very 
short time-scale

k = π
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nk"k = 5.63; therefore 2N < E < 4N which cor-
responds to T = −0.74 and µ = 4.16, i.e., negative tem-
peratures. One thousand realizations of the same spectrum
(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
the ensemble. The nonlinear parameter ν was set to 0.03. In
Fig. 4 we report the spectral energy density at time t = 0,
t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
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behavior of e(k) matches the theoretical RJ predictions. The
simulation was carried out up to time t = 105 and no fur-
ther changes in the energy-density spectrum were observed
(similar results have been obtained in Ref. [29]). Moreover,
we show in the inset of the figure the monotonicity of the
entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
temperatures. Concerning the fluctuations described by the
second moment, we show in Fig. 5 the evolution in time of
&k for k = π . The numerical results show that the prediction
of Eq. (9) is accurate: After a very quick relaxation to the
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The probability density function of Ik is also reported in Fig. 6
for different times. The prediction based on the wave kinetic
approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.

 0

 10

 20

 30

 40

 50

 0  2000  4000  6000  8000  10000

(k
=

)

t

(k= )

2 n(k= )2

 6
 8

 10
 12
 14
 16
 18

 0  10  20  30  40
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IV. DISCUSSION AND CONCLUSIONS

The notion of negative temperatures is well established
through some experimental results and theoretical arguments
and it is well known that it is strictly connected with the
existence of an upper bound for the energy. In our work we
have studied negative temperatures in a lattice starting from a
microscopic dynamics. The family of stationary equilibrium
solutions of the WK equation associated with the lattice dy-
namics are characterized by two parameters which play the
role of temperature and chemical potential. For most of the
systems in this framework the temperature is positive and
the chemical potential is negative. However, if the dispersion
relation is bounded from above, as in the case of the DNLS
equation, then the distribution of particles in wave numbers
can be positive also for negative temperatures and positive
chemical potential. This simple observation has allowed us
to carry out the calculation and express analytically T and
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FIG. 6. Probability density function of I (k = π ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].
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CONCLUSIONS

‣ Negative temperatures are possible in DNLS due to the (i) upper 
bound of the dispersion relation and (ii) the fact that the system 
conserves two quantities

‣ Relations between intensive and extensive quantities can be 
found in a closed form for DNLS

‣ Negative temperature states are not so exotic, as their dynamics 
is very well described (in the weakly nonlinear limit) by WT 
kinetic theory as well as standard positive temperature states

‣ Our conclusions are likely to be valid to any other dispersive 
wave system characterised by 4-wave interactions where the 
dispersion relation is bounded from above

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probability Pi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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[Braun et al., Science 339, 2013]

sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center and w
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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‣ Any experimental realisation?


