
EQUILIBRIUM AND NON-EQUILIBRIUM DESCRIPTION OF 
NEGATIVE TEMPERATURE STATES IN A ONE-DIMENSIONAL 
LATTICE USING A WAVE KINETIC APPROACH

‣ Negative temperature states
‣ Discrete nonlinear Schroedinger model (DNLS) 
‣ Wave interaction and turbulence theory
‣ Our results and conclusions
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HOW WE DEFINE TEMPERATURE?

‣ In statistical mechanics temperature is more generally 
defined as

‣ In a non-interactive (ideal) gas, the temperature is 
proportional to the macroscopic average of the kinetic 
energies of the gas components 

‣ Formally, temperature is only defined at equilibrium, that is 
for a classical gas when the Maxwell-Boltzmann distribution 
is reached

‣ At equilibrium, the energy per particle is Ep = n
1
2 kbT

1
T

= ∂S
∂E

⟹ T = 1
∂S
∂E



HOW WE DEFINE TEMPERATURE?

‣ Negative temperature states are thus “hotter states” as 
temperature first grows to infinity before becoming negative

‣ Usually, entropy is a monotonic growing function vs. energy 
and higher energies corresponds to higher temperatures

‣ Some peculiar systems shows entropy decreasing after 
reaching a global maximum
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SYSTEMS POSSESSING NEGATIVE TEMPERATURES

[Purcell & Pound, Physical Review 81, 1951]
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FIG. 2. Relaxation time constant as a function of magnetic
field for Lir in LiF.

concerned and the reduction in the energy of the photons emitted
and absorbed.
Therefore, when one of us (R.V.P.)s discovered the long relaxa-

tion time of a pure single crystal of LiF, it was suggested by the
other (N.F.R.) that such long relaxation times make possible a
new nuclear magnetic resonance technique which would have high
sensitivity at low frequencies of the oscillating magnetic 6eld.
%'ith the new method, the crystal is removed from a strong mag-
netic field for a time short compared to the relaxation time of the
crystal in the absence of a strong field (15 sec for LiF) and during
this short time is placed in a weak audiofrequency magnetic
6eld. For one isotope of the crystal, the ratio of the nuclear mag-
netization immediately before and immediately after the removal
from the strong field is measured' with a radiofrequency spec-
trometer. This ratio is then observed as a function of the frequency
of the audio-oscillator. The dependence of this ratio on the audio-
oscillator frequency presumably arises from resonant heating of
the nuclear spin system to a temperature above the low value
attained by adiabatic demagnetization when the crystal is re-
moved from the strong magnetic field.
In this way the audiofrequency spectrum of LiF was studied

between 20 and 200,000 cycles/sec with the strong 6eld (6376
gauss) observations being of the Li' resonance. Kith audio-
frequency magnetic fields of about 0.2 gauss, it was found that
resonant heating did not take place below 100 cycles but did occur
continuously and completely at frequencies between 1000 cycles
and 200,000 cycles. However, when the amplitude of the audio-
frequency field was reduced to 0.018 gauss applied for 3 sec,
a nuclear audiofrequency spectrum was observed which possessed
a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency
spectrum of LiF was its indication that the magnetic field reversal
in the negative temperature experiments described in an accom-
panying paper' must be accomplished in a time short compared
to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent
values of the magnetic 6eld between 0 and 42 gauss in the upper
curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve
correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close
agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~
respectively. The reduction of the subsequent Li7 magnetization
by an oscillatory field appropriate to F"indicates that during or
subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.
The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance
by a factor of two is plotted as a function of the strength of the
weak magnetic 6eld in which the sample is stored.
I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).
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A NUMBER of special experiments have been performed with
a crystal of LiF which, as reported previously, ' had long

relaxation times both in a strong field and in the earth's 6eld.
These experiments were designed to discover the conditions deter-
mining the sense of remagnetization by a strong field when the
initially magnetized crystal was put for a brief interval in the
earth's field.
At field strengths allowing the system to be described by its

net magnetic moment and angular momentum, a suKciently rapid
reversal of the direction of the magnetic 6eld should result in a
magnetization opposed to the new sense of the 6eld. The reversal
must occur in such a way that the time spent below a minimum
effective 6eld is so small compared to the period of the Larmor
precession that the system cannot follow the change adiabatically.
The experiments in zero 6eld reported above' showed a zero field
resonance at about 50 kc and therefore the following experiment
was tried.
The crystal, initially at equilibrium magnetization in the strong

(6376 gauss) field, was quickly removed, through the earth' s
field, and placed inside a small solenoid, the axis of which was

FIG. 1. A typical record of the reversed nuclear magnetization. On the
left is a deflection characteristic of the normal state at equilibrium mag-
netization (T=300'K), followed by the reversed deflection (T= -350'K),
decaying (T-+—~) through *ero deflection (T = ~) to the initial equi-
librium state.
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field for Lir in LiF.

concerned and the reduction in the energy of the photons emitted
and absorbed.
Therefore, when one of us (R.V.P.)s discovered the long relaxa-

tion time of a pure single crystal of LiF, it was suggested by the
other (N.F.R.) that such long relaxation times make possible a
new nuclear magnetic resonance technique which would have high
sensitivity at low frequencies of the oscillating magnetic 6eld.
%'ith the new method, the crystal is removed from a strong mag-
netic field for a time short compared to the relaxation time of the
crystal in the absence of a strong field (15 sec for LiF) and during
this short time is placed in a weak audiofrequency magnetic
6eld. For one isotope of the crystal, the ratio of the nuclear mag-
netization immediately before and immediately after the removal
from the strong field is measured' with a radiofrequency spec-
trometer. This ratio is then observed as a function of the frequency
of the audio-oscillator. The dependence of this ratio on the audio-
oscillator frequency presumably arises from resonant heating of
the nuclear spin system to a temperature above the low value
attained by adiabatic demagnetization when the crystal is re-
moved from the strong magnetic field.
In this way the audiofrequency spectrum of LiF was studied

between 20 and 200,000 cycles/sec with the strong 6eld (6376
gauss) observations being of the Li' resonance. Kith audio-
frequency magnetic fields of about 0.2 gauss, it was found that
resonant heating did not take place below 100 cycles but did occur
continuously and completely at frequencies between 1000 cycles
and 200,000 cycles. However, when the amplitude of the audio-
frequency field was reduced to 0.018 gauss applied for 3 sec,
a nuclear audiofrequency spectrum was observed which possessed
a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency
spectrum of LiF was its indication that the magnetic field reversal
in the negative temperature experiments described in an accom-
panying paper' must be accomplished in a time short compared
to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent
values of the magnetic 6eld between 0 and 42 gauss in the upper
curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve
correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close
agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~
respectively. The reduction of the subsequent Li7 magnetization
by an oscillatory field appropriate to F"indicates that during or
subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.
The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance
by a factor of two is plotted as a function of the strength of the
weak magnetic 6eld in which the sample is stored.
I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).
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relaxation times both in a strong field and in the earth's 6eld.
These experiments were designed to discover the conditions deter-
mining the sense of remagnetization by a strong field when the
initially magnetized crystal was put for a brief interval in the
earth's field.
At field strengths allowing the system to be described by its

net magnetic moment and angular momentum, a suKciently rapid
reversal of the direction of the magnetic 6eld should result in a
magnetization opposed to the new sense of the 6eld. The reversal
must occur in such a way that the time spent below a minimum
effective 6eld is so small compared to the period of the Larmor
precession that the system cannot follow the change adiabatically.
The experiments in zero 6eld reported above' showed a zero field
resonance at about 50 kc and therefore the following experiment
was tried.
The crystal, initially at equilibrium magnetization in the strong

(6376 gauss) field, was quickly removed, through the earth' s
field, and placed inside a small solenoid, the axis of which was

FIG. 1. A typical record of the reversed nuclear magnetization. On the
left is a deflection characteristic of the normal state at equilibrium mag-
netization (T=300'K), followed by the reversed deflection (T= -350'K),
decaying (T-+—~) through *ero deflection (T = ~) to the initial equi-
librium state.

Non-interacting spin chain, E = (N+ − N−) μB
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N+ = 0, N− = N
S = ln(Ω = 1) = 0, E = Emin

N+ = 1, N− = N − 1
S = ln(Ω = N), E > Emin

N+ = N, N−0
S = ln(Ω = 1) = 0, E = Emax



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

‣  is the complex amplitude of the oscillator at site 
‣ two conserved quantities

ψm m

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

H =
M

∑
m=1

( |ψm+1 − ψm |2 − 1
2 ν |ψ |4 ) , energy

N =
M

∑
m=1

|ψ |2 , wave-action

‣ (local) discretisation of the continuous one-dimensional NLS 
model , but it is not an integrable 
model

i∂tψ + ∇2ψ + ν |ψ |2 ψ = 0



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

The discrete nonlinear Schroedinger (DNLS) equation reads

‣ lossless optical wave guide 
arrays

‣ Bose-Einstein condensates 
in optical traps

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

DNLS is a very good model, in the limit of tight-binding 
approximation, for

DNLS is also a qualitatively good model 
to describe some phenomena observed 
in photo refractive crystals

180 M.A. Porter

Fig. 8.3 (Right) Diagram of experimental setup for the creation of a photorefractive crystal lattice
with electro-optic anisotropy. (Left) Typical observation of the lattice at the terminal face of the
crystal. Each waveguide has a diameter of about 7 !m and is about 11 !m away from its nearest
neighbors. Reprinted with permission from Fig. 1 in [9]. Copyright 2003 by the Nature Publishing
Group

which experiences discrete diffraction (the optical equivalent of quantum tunnelling
in a periodic potential) and can form a discrete soliton provided the nonlinearity
is sufficiently large. The model for photorefractive crystals is a continuous NLS
equation with saturable nonlinearity [9],

iUz + Uxx + Uyy − E0

1 + Il + |U |2
U = 0 , (8.3)

where z is the propagation distance, (x, y) are transverse coordinates, U is the
slowly varying amplitude of the probe beam (normalized by the dark irradiance
of the crystal), and E0 is the applied dc field, and Il is a lattice intensity function.
For a square lattice, Il = I0 sin2{(x + y)/

√
2} sin2{(x − y)/

√
2}, where I0 is the lat-

tice’s peak intensity. DNLS equations have been enormously insightful in providing
corroborations between theoretical predictions and experimental observations (see,
in particular, the investigations of discrete vortices in [17, 18, 42]), although they
do not provide a prototypical model in this setting the way they do with waveguide
arrays.

For optical induction to work, it is essential that the interfering waves are un-
affected by the nonlinearity (to ensure that the “waveguides” are as uniform as
possible) but that the probe (soliton-forming) beam experiences a significant non-
linearity. This can be achieved by using a photorefractive material with a strong
electro-optic anisotropy. In such materials, coherent rays interfere with each other
and form a spatially varying pattern of illumination (because the local index of re-
fraction is modified, via the electro-optic effect, by spatial variations of the light
intensity). This causes ordinary polarized plane waves to propagate almost linearly
(i.e., with practically no diffraction) and extraordinary polarized waves to propagate
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Fig. 8.1 (Left) Experimental setup for the waveguide array experiments reported in [3]. (Right) Low-power (diffraction) versus high-power experiments. The
latter result in discrete spatial solitons. Reprinted from Figs. 2, 4, and 5 with permission from [3]. Copyright 1998 by the American Physical Society
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i!!t =
(

−!2∇2

2m
+ g0|!|2 + V(r)

)
! , (8.4)

where ! = !(r, t) is the condensate wave function (order parameter) normalized to
the number of atoms, V(r) is the external potential, and the effective self-interaction
parameter is g̃ = [4π!2a/m][1+ O(ζ 2)], where a is the two-body scattering length
and ζ ≡

√
|!|2|a|3 is the dilute gas parameter [55, 60, 61]. The cubic nonlinearity

arises from the nearly perfect contact (delta function) interaction between particles.
In a quasi-1D (“cigar-shaped”) BEC, the transverse dimensions are about equal

to the healing length, and the longitudinal dimension is much larger than the trans-
verse ones. One can then average (8.4) in the transverse plane to obtain the 1D GP
equation [55, 62],

i!ut = −
[ !2

2m

]
uxx + g|u|2u + V (x)u , (8.5)

where u, g, and V are, respectively, the rescaled 1D wave function, interaction pa-
rameter, and external trapping potential. The interatomic interactions in BECs are
determined by the sign of g: they are repulsive (producing a defocusing nonlinearity)
when g > 0 and attractive (producing a focusing nonlinearity) when g < 0.

BECs can be loaded into OL potentials (or superlattices, which are small-scale
lattices subjected to a large-scale modulation), which are created experimentally
as interference patterns of laser beams. Consider two identical laser beams with
parallel polarization and equal peak intensities, and counterpropagate them as in
Fig. 8.5a so that their cross sections overlap completely. The two beams create an
interference pattern with period d = λL/2 (half of the optical wavelength) equal
to the distance between consecutive maxima of the resulting light intensity. The
potential experienced by atoms in the BEC is then [21]

V (x) = V0 cos2
(πx

d

)
, (8.6)

where V0 is the lattice depth. See [21] for numerous additional details.

Fig. 8.5 Diagram of the creation of a 1D optical lattice potential using (a) counterpropagating
laser beams and (b) beams intersecting at an angle θ inducing a spacing d = λL cos(θ/2)/2. The
quantities kL and k′

L denote the wave vectors of the beams. The lattice period is given by the
distance d between consecutive maxima of light intensity in the interference pattern. Reprinted
with permission from Fig. 1 in [21]. Copyright 2006 by the American Physical Society

[Kevrekidis The Discrete Nonlinear Schroedinger Equation, 2009]



THE DISCRETE NONLINEAR SCHROEDINGER EQUATION

Assuming periodic boundary conditions, and introducing discrete Fourier 
direct and inverse transforms

i
dψ̂k1

dt
= ωk1

ψ̂k1
− ν ∑

k2,k3,k4

ψ̂*k2
ψk3

ψk4
δ34

12

ωk = 4 sin2(πk/M)

ψm =
M

∑
m=1

ψ̂kei2πkm/M and ψ̂k = 1
M

M

∑
m=1

ψme−i2πkm/M

the DNLS becomes in Fourier space

where the dispersion relation is

and the Kronecker’s  accounts for the Umklapp 
scattering processes, that is  

δ34
12 = δk1+k2,k3+k4

k1 + k2, k3 + k4 mod M

M = 16

1 2 3 4 5 6

1

2

3

4



THE WAVE INTERACTION/TURBULENCE APPROACH

Wave turbulence (WT) theory is a statistical mechanics approach to 
weakly dispersive wave systems (waves in optics, plasma, ocean, 
Bose-Einstein condensates)

[Nazarenko, Wave Turbulence, 2011]

The (large time) efficient energy transfer in the system goes only 
trough exact resonant n-wave interaction processes satisfying

k1 ± k2 ± …kn = 0
ω1 ± ω2 ± …ωn = 0 (resonant manifold)



WT IN DNLS (  AND KINETIC EQUATION)M → ∞

dnk1

dτ
= 4πν2 ∫

2π

0
nk1

nk2
nk3

nk4 ( 1
nk1

+ 1
nk2

− 1
nk3

− 1
nk4 )

× δ (Δω34
12) δ34

12 dk2dk3dk4 ,

where , 
 and 

Δω12 = ω1 + ω2 − ω3 − ω4
k ∈ [0,2π] ωk = 4 sin2(k/2)

1 2 3 4 5 6

1

2

3

4

M = 16 and
M → ∞

[Onorato & Dematteis, JPC 4, 2020]

‣ 4-wave interactions
‣ Take the limit 
‣ resonant manifold given by

‣ First non zero moment is the wave-action density 
‣ At large time-scale , the dynamics follows

M → ∞

nk(t) ∝ ⟨ | ψ̂k |2 ⟩
τ

k1 + k2 − k3 − k4 = 0 mod 2π
ω1 + ω2 − ω3 − ω4 = 0



WT IN DNLS (TAKING THE THERMODYNAMIC LIMIT)

‣ Two invariants

‣ KE is time-irreversible as, given the entropy                               
an H-theorem  holds

‣ The equilibrium is the Rayleigh-Jeans distribution 

dS/dt ≥ 0
(T, μ)

E = ∫
2π

0
ωk nk dk and N = ∫

2π

0
nk dk

n(RJ)
k = T

ωk − μ
= 1

βωk − γ
with β = 1/T, γ = μ/T

dnk1

dτ
= 4πν2 ∫

2π

0
nk1

nk2
nk3

nk4 ( 1
nk1

+ 1
nk2

− 1
nk3

− 1
nk4 )

× δ (Δω34
12) δ34

12 dk2dk3dk4

S(t) = ∫
2π

0
ln nk(t) dk ,



RJ AND NEGATIVE TEMPERATURE STATES

n(RJ)
k = T

ωk − μ
= 1

βωk − γ
with β = 1/T, γ = μ/T

EQUILIBRIUM AND NONEQUILIBRIUM DESCRIPTION OF … PHYSICAL REVIEW E 105, 014206 (2022)

FIG. 1. Spectral energy density e(k) = ω(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to T = 1 and
µ = 0; the green line corresponds to T = 1 and µ = −0.1 and the
black line (sharply peaked around k = π ) corresponds to negative
temperatures, i.e., T = −0.5 and µ = 5. All these curves are exact
stationary solutions of the WK equation.

Negative temperatures are characterized by a peaked dis-
tribution around k = π .

Besides mean values, the wave kinetic approach offers the
possibility to investigate the fluctuations and their relaxation
timescale. It can be checked by substitution that a nonsta-
tionary solution of Eq. (9) is #k (t ) = 2n2

k (t ), provided nk (t )
evolves according to (7). The understanding of the timescale
by which such a solution is approached is extremely interest-
ing. Because of their similar mathematical structures, one may
expect that Eqs. (7) and (9) evolve on the same timescale. As a
matter of fact, it will be shown in the numerical computations
that #k (t ) approaches 2n2

k (t ) on a much faster timescale than
the one pertaining to the evolution of nk . Indeed, assuming that
#k (t ) is characterized by two timescales, the longer one being
the same as the one for nk (t ), it is straightforward to show
from Eq. (9) that #k (t ) reaches 2nk (t )2 exponentially fast and
then it remains enslaved to it, as it tends to its asymptotic
value.

A. Equilibrium and thermodynamics

It is not obvious a priori to what extent the variables
used in the WK equation correspond to the ones appearing
in the first law of thermodynamics. Here we show that they
satisfy the equilibrium classical relation between T and S, i.e.,
T = (∂S/∂E )−1. Given the energy, E , the number of particles,
N , and S at equilibrium, i.e., for n(k, t ) = n(k)(RJ), we obtain
(similar integrals were calculated in Ref. [33] to study the
erosion of a discrete breather by a thermal bath):

E (γ ,β ) = 2π

β

(
1 + γ√

γ (γ − 4β )

)
,

N (γ ,β ) = 2π√
γ (γ − 4β )

, (14)

S(γ ,β ) = 2π ln
[

2
2β − γ +

√
γ (γ − 4β )

]
. (15)

FIG. 2. Energy, E , as a function of the number of particles, N .
The white region corresponds to nonaccessible energies, the light
blue to negative temperatures, and the red to positive temperatures.
The lines corresponding to 0+, 0−, and ±∞ temperatures are also
visible. T = 0− corresponds to E = 4N , T = ±∞ to E = 2N , and
T = 0+ to E = 0.

To express the entropy as a function of energy and number of
particles, S(E , N ), we invert the relations in (14):

β(E , N ) = 4π (E − 2N )
E (E − 4N )

, γ (E , N ) = 2πE
N (E − 4N )

. (16)

Knowing that γ = µ/T , the expression for the chemical po-
tential can be derived:

µ(E , N ) = E2

2(E − 2N )N
. (17)

A phase diagram with the energy as a function of number of
particles for fixed temperature can be easily built by solving
the first of Eqs. (16) for the energy to obtain:

E = 2N + 2πT − 2sgn[T ]
√

N2 + π2T 2. (18)

For T → 0+, we have E → 0; for T → 0−, we have E → 4N
from below; for T → ±∞, we get E → 2N .

Interestingly, since γ is always negative, there is an up-
per value for the energy for fixed number of particles, i.e.,
0 < E < 4N . Moreover, a positive β requires E < 2N . Then
negative values of β, i.e., negative temperatures, are possible
only for 2N < E < 4N . For positive temperatures, the chem-
ical potential is negative and becomes positive for negative
temperatures, with the constraint that µ > 4. These results are
shown in Fig. 2. Plugging Eqs. (16) into (15), we obtain:

S(E , N ) = 2π ln
[

E (4N − E )
8πN

]
, (19)

see also Ref. [30]. The entropy is defined for 0 < E < 4N ; it
is a continuous function of its arguments and it has an absolute
maximum at E = 2N . For fixed E and large N , there is a hor-
izontal asymptote at N = 2π ln[E/(2π )] which corresponds

014206-3

‣ Play with  and  to 
have negative 
temperatures, , 
but still a positive-
defined distribution

‣ energy density 
distribution 

T μ

T < 0

ek = ωk nk



LINKING INTENSIVE AND EXTENSIVE QUANTITIES

E = ∫
2π

0
ωk nk dk , N = ∫

2π

0
nk dk and S(t) = ∫

2π

0
ln nk(t) dk

β(E, N) = 4π(E − 2N)
E(E − 4N)

γ(E, N) = 2πE
N(E − 4N)

S(E, N) = 2π ln [ E(4N − E)
8πN ]

Given the RJ distribution , one can obtainn(RJ)
k = 1

βωk − γM. ONORATO et al. PHYSICAL REVIEW E 105, 014206 (2022)
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FIG. 3. The entropy, S, as a function of the energy, E , for N = 1.
The derivative of S is the inverse of the temperature. For E > 2N=2
the derivative is negative, implying a negative temperature. Note that
entropy is defined for 0 < E < 4N .

to γ = 0. In Fig. 3, we show the entropy as a function of the
energy E for N = 1.

The above description is consistent with the formalism of
classical thermodynamics; indeed, differentiating the entropy

dS(E , N ) =
(

∂S
∂E

)

N
dE +

(
∂S
∂N

)

E
dN (20)

and calculating the derivatives, it turns out that (∂S/∂E )N =
β and (∂S/∂N )E = −γ . This implies that the definition
of entropy and other variables in the WK equation at the
Rayleigh-Jeans equilibrium match the corresponding defini-
tions given in classical thermodynamics.

B. The Boltzmann entropy and its relation to the
nonequilibrium entropy defined in Eq. (11)

The Boltzmann entropy SB is proportional to the natural
logarithm of the number of possible microstates $ of a system
at fixed energy and number of particles:

SB = ln $. (21)

The strategy to compute $ is the following: We consider
$(N, H ) and take a two-dimensional Laplace transform to get
$(γ ,β ):

$(γ ,β ) =
∫ ∞

0
$(N, H )eγ N−βH dHdN. (22)

$(N, H ) can be calculated as

$(N, E ) =
∫ ∞

0
δ

(

N −
M∑

k=1

Ik

)

δ

(

E −
M∑

k=1

ωkIk

)
M∏

k=1

dIk,

(23)
where, consistently with our hypothesis related to the random
phases and the smallness of the nonlinearity, we have assumed
H # E , with E the harmonic energy density. We plug (23) into

(22) and use the property of the δ, so that

$(γ ,β ) =
∫ ∞

0
eγ

∑M
k=1 Ik−β

∑M
k=1 ωk Ik

M∏

k=1

dIk, (24)

which can be rewritten as:

$(γ ,β ) =
∫ ∞

0

M∏

k=1

eγ Ik−βωk Ik dIk . (25)

The dependence on Ik has been factorized and we can integrate
over Ik to get

$(γ ,β ) =
M∏

k=1

1
−γ + βωk

. (26)

We then play the usual trick of taking the exponential of a log

$(γ ,β ) = exp

[

ln
M∏

k=1

1
−γ + βωk

]

= exp

[
M∑

k=1

ln
1

−γ + βωk

]

. (27)

Now we take the large box limit M = 2π/(k → ∞ and using
the definition of the Boltzmann’s entropy SB = ln $ we get:

SB(γ ,β ) = ln $(γ ,β ) = M
2π

∫ 2π

0
ln

[
1

−γ + βωk

]
dk.

(28)
This formula, apart from the factor M/2π , is our entropy, see
Eq. (11) where n(k) has been taken at equilibrium.

III. DIRECT NUMERICAL SIMULATIONS OF THE DNLS
EQUATION.

The fact that the WK equation predicts the existence of
negative temperatures does not necessarily imply that the
DNLS equation at small nonlinearity displays stationary so-
lutions with T < 0, as the WK equation is formally derived
only in the limit of random phases and random amplitudes.
A direct numerical simulation of the deterministic equation of
motion is needed in order to establish whether the stationary
solutions of Eqs. (7) and (9) are compatible with the micro-
scopic dynamics.

The DNLS equation has been solved numerically using a
standard fourth-order Runge-Kutta method; the simulations
performed preserved the Hamiltonian and the number of par-
ticles up to four significant digits. The initial conditions are
provided in Fourier space; the complex amplitudes in physical
space are recovered using the discrete Fourier transform

ψm =
M∑

k=1

√
nk(k e(i2πkm/M )eiφk , (29)

where (k = 2π/M and φk are random phases distributed
uniformly in the [0, 2π ) interval. In order to observe nega-
tive temperature, we consider the following Gaussian-shaped
initial wave action spectral density function:

nk = B + A exp
{−[(k − k0)(k]2

(2σ 2)

}
(30)
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LINKING INTENSIVE AND EXTENSIVE QUANTITIES

E = ∫
2π

0
ωk nk dk , N = ∫

2π

0
nk dk and S(t) = ∫

2π

0
ln nk(t) dk

β(E, N) = 4π(E − 2N)
E(E − 4N)

γ(E, N) = 2πE
N(E − 4N)

S(E, N) = 2π ln [ E(4N − E)
8πN ]

Given the RJ distribution , one can obtainn(RJ)
k = 1

βωk − γ
EQUILIBRIUM AND NONEQUILIBRIUM DESCRIPTION OF … PHYSICAL REVIEW E 105, 014206 (2022)

FIG. 1. Spectral energy density e(k) = ω(k)n(k) for different
temperatures and chemical potentials. The red horizontal line is
the typical equipartition of energy and corresponds to T = 1 and
µ = 0; the green line corresponds to T = 1 and µ = −0.1 and the
black line (sharply peaked around k = π ) corresponds to negative
temperatures, i.e., T = −0.5 and µ = 5. All these curves are exact
stationary solutions of the WK equation.

Negative temperatures are characterized by a peaked dis-
tribution around k = π .

Besides mean values, the wave kinetic approach offers the
possibility to investigate the fluctuations and their relaxation
timescale. It can be checked by substitution that a nonsta-
tionary solution of Eq. (9) is #k (t ) = 2n2

k (t ), provided nk (t )
evolves according to (7). The understanding of the timescale
by which such a solution is approached is extremely interest-
ing. Because of their similar mathematical structures, one may
expect that Eqs. (7) and (9) evolve on the same timescale. As a
matter of fact, it will be shown in the numerical computations
that #k (t ) approaches 2n2

k (t ) on a much faster timescale than
the one pertaining to the evolution of nk . Indeed, assuming that
#k (t ) is characterized by two timescales, the longer one being
the same as the one for nk (t ), it is straightforward to show
from Eq. (9) that #k (t ) reaches 2nk (t )2 exponentially fast and
then it remains enslaved to it, as it tends to its asymptotic
value.

A. Equilibrium and thermodynamics

It is not obvious a priori to what extent the variables
used in the WK equation correspond to the ones appearing
in the first law of thermodynamics. Here we show that they
satisfy the equilibrium classical relation between T and S, i.e.,
T = (∂S/∂E )−1. Given the energy, E , the number of particles,
N , and S at equilibrium, i.e., for n(k, t ) = n(k)(RJ), we obtain
(similar integrals were calculated in Ref. [33] to study the
erosion of a discrete breather by a thermal bath):

E (γ ,β ) = 2π

β

(
1 + γ√

γ (γ − 4β )

)
,

N (γ ,β ) = 2π√
γ (γ − 4β )

, (14)

S(γ ,β ) = 2π ln
[

2
2β − γ +

√
γ (γ − 4β )

]
. (15)

FIG. 2. Energy, E , as a function of the number of particles, N .
The white region corresponds to nonaccessible energies, the light
blue to negative temperatures, and the red to positive temperatures.
The lines corresponding to 0+, 0−, and ±∞ temperatures are also
visible. T = 0− corresponds to E = 4N , T = ±∞ to E = 2N , and
T = 0+ to E = 0.

To express the entropy as a function of energy and number of
particles, S(E , N ), we invert the relations in (14):

β(E , N ) = 4π (E − 2N )
E (E − 4N )

, γ (E , N ) = 2πE
N (E − 4N )

. (16)

Knowing that γ = µ/T , the expression for the chemical po-
tential can be derived:

µ(E , N ) = E2

2(E − 2N )N
. (17)

A phase diagram with the energy as a function of number of
particles for fixed temperature can be easily built by solving
the first of Eqs. (16) for the energy to obtain:

E = 2N + 2πT − 2sgn[T ]
√

N2 + π2T 2. (18)

For T → 0+, we have E → 0; for T → 0−, we have E → 4N
from below; for T → ±∞, we get E → 2N .

Interestingly, since γ is always negative, there is an up-
per value for the energy for fixed number of particles, i.e.,
0 < E < 4N . Moreover, a positive β requires E < 2N . Then
negative values of β, i.e., negative temperatures, are possible
only for 2N < E < 4N . For positive temperatures, the chem-
ical potential is negative and becomes positive for negative
temperatures, with the constraint that µ > 4. These results are
shown in Fig. 2. Plugging Eqs. (16) into (15), we obtain:

S(E , N ) = 2π ln
[

E (4N − E )
8πN

]
, (19)

see also Ref. [30]. The entropy is defined for 0 < E < 4N ; it
is a continuous function of its arguments and it has an absolute
maximum at E = 2N . For fixed E and large N , there is a hor-
izontal asymptote at N = 2π ln[E/(2π )] which corresponds
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i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M

DIRECT NUMERICAL SIMULATIONS OF THE DNLS 
MODEL

‣ Solve DNLS using a standard forth-order RK 
algorithm that preserves (sufficiently well) the 
conserved quantities for large time-scales

‣ Average over 1,000 realisations initialised with 
the same spectral density but phases randomly 
distributed θk ∈ [0,2π)



NUMERICAL RESULTS: RJ EQUILIBRIUM

nk = B + A exp { −[(k − k0)Δk]2

2σ2 }
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FIG. 4. Energy density as a function of wave number for a simu-
lation of the DNLS equation characterized by the initial condition
in (30) that corresponds to T = −0.74 and µ = 4.16. Note that,
because of the conservation of energy and number of particles,
temperature and chemical potential do not change in time [44,45].
The energy spectral density is the result of averaging over 1000
realizations characterized by different random phases. At the center
of the domain, from bottom to top, the curves refer to t = 0, t = 103,
t = 104, respectively, and the dark curve is the prediction from the
Rayleigh-Jeans distribution, Eq. (12). In the inset the entropy defined
in Eq. (11) as a function of time is displayed.

with σ = 0.9, A = 2, B = 0, "k = 2π/M, M = 512, and
k0 = M/2. With this choice E =

∑
ωknk"k = 18.80 and

N =
∑

nk"k = 5.63; therefore 2N < E < 4N which cor-
responds to T = −0.74 and µ = 4.16, i.e., negative tem-
peratures. One thousand realizations of the same spectrum
(deterministic amplitudes) with different random phases have
been considered and the results are obtained by averaging over
the ensemble. The nonlinear parameter ν was set to 0.03. In
Fig. 4 we report the spectral energy density at time t = 0,
t = 103, and t = 104; the RJ prediction with the temperature
and chemical potential obtained from theory is also shown;
the curves are almost indistinguishable, i.e., the long time
behavior of e(k) matches the theoretical RJ predictions. The
simulation was carried out up to time t = 105 and no fur-
ther changes in the energy-density spectrum were observed
(similar results have been obtained in Ref. [29]). Moreover,
we show in the inset of the figure the monotonicity of the
entropy S, as predicted by the H-theorem for the wave kinetic
equation, see (11). Similar plots can be obtained for positive
temperatures. Concerning the fluctuations described by the
second moment, we show in Fig. 5 the evolution in time of
&k for k = π . The numerical results show that the prediction
of Eq. (9) is accurate: After a very quick relaxation to the
solution (shown in the inset), &k follows the evolution 2n2

k .
The probability density function of Ik is also reported in Fig. 6
for different times. The prediction based on the wave kinetic
approach is the exponential distribution [15,41,46]; the figure
shows that the distribution tends very rapidly, on a shorter
timescale than the one required for the spectrum to reach its
stationary value, to the exponential curve.
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FIG. 5. Evolution in time of the second moment &(k = π , t ) in
light green. The solution of Eq. (9) &(k = π , t ) = 2n(k = π , t )2 is
shown in red. In the inset a zoom of the the early stages of the
evolution are also reported.

IV. DISCUSSION AND CONCLUSIONS

The notion of negative temperatures is well established
through some experimental results and theoretical arguments
and it is well known that it is strictly connected with the
existence of an upper bound for the energy. In our work we
have studied negative temperatures in a lattice starting from a
microscopic dynamics. The family of stationary equilibrium
solutions of the WK equation associated with the lattice dy-
namics are characterized by two parameters which play the
role of temperature and chemical potential. For most of the
systems in this framework the temperature is positive and
the chemical potential is negative. However, if the dispersion
relation is bounded from above, as in the case of the DNLS
equation, then the distribution of particles in wave numbers
can be positive also for negative temperatures and positive
chemical potential. This simple observation has allowed us
to carry out the calculation and express analytically T and
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FIG. 6. Probability density function of I (k = π ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].
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S(t) = ⟨∫
2π

0
ln nk(t) dk⟩

ek = ⟨ωk nk⟩initial wave-action distribution



NUMERICAL RESULTS: FLUCTUATIONS

The WT theory also allows to derive higher order moments of the 
angle-action variables, for example the second moment Λk ∝ ⟨ | ψ̂k |4 ⟩
One can check that if , then kinetic equation for the 
fluctuations is always satisfied provided that  follows the KE 
described before. One can then test this relation!

Λk(t) = 2 n2
k (t)

nk(t)

‣ We tested it for the 
mode  in the 
negative temperature 
regime

‣ Higher-order moments 
starts to follow the 
kinetic theory at 
shorter time-scales

k = π
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FIG. 6. Probability density function of I (k = π ) for different
times. The dark line corresponds to the exponential distribution de-
rived in Refs. [15,41,46].
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CONCLUSIONS

‣ Negative temperatures are possible in DNLS due to the (i) upper 
bound of the dispersion relation and (ii) the fact that the system 
conserves two quantities

‣ Relations between intensive and extensive quantities can be 
found in a closed form for DNLS

‣ Negative temperature states are not so exotic, as their dynamics 
is very well described (in the weakly nonlinear limit) by WT 
kinetic theory as well as standard positive temperature states

‣ Our conclusions are likely to be valid to any other dispersive 
wave system characterised by 4-wave interactions where the 
dispersion relation is bounded from above

i
dψm

dt
+ (ψm+1 + ψm−1 − 2ψm) + ν |ψm |2 ψm = 0 , m = 1,…, M
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