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STOKES DRIFT AND IMPURITY 
TRANSPORT IN A QUANTUM FLUID

‣ Recap on Stokes drift in classical fluids
‣ Gross-Pitaevskii model with classical impurities
‣ Transport of a single impurity in 2d 



THE STOKES DRIFT

“The Stokes drift velocity is the average velocity when following a 
specific fluid parcel as it travels with the fluid flow.”

[Quote and picture below taken from “Stokes drift” on Wikipedia]



THE STOKES DRIFT

This effect was derived first by G.G. Stokes in 1847 in the context of 
surface gravity waves

[Stokes, TCPS 8, 441, 1847; Longuet-Higgins, PTRSA 245, 535 (1953)]

‣ Go from Eulerian to Lagrangian 
framework

‣ Multiple-time scale expansion
‣ For a sinusoidal wave 

, at the 
second order in the wave 
steepness the drift results in

η = a cos(kx − ωt)

vdrift = ωka2e2kz [Deep_water_wave.gif, 
from “Stokes drift” on Wikipedia]



THE STOKES DRIFT AND PARTICLE TRANSPORT

‣ A similar derivation can be repeated to study the motion of an 
external particle, once defining its equation of motion depending 
on the fluid velocity is postulated

‣ Perfect tracers: small particles with infinite Stokes drag
‣ Buoyancy or other inertial effects

[Longuet-Higgins, PTRSA 245, 535 (1953); Santamaria et al., EPL 102, 14003 (2013)]

WHAT IF WE CONSIDER PARTICLES IMMERSED IN THE 
FLUID?

··q = F (u, …)



IS THERE AN ANALOGUE OF STOKES DRIFT IN A 
QUANTUM FLUID (INVISCID AND COMPRESSIBLE)? 

IF SO, HOW DOES IT AFFECT THE TRANSPORT OF 
PARTICLES (IMPURITIES)?

[https://stokes200.weebly.com]



THE GROSS-PITAEVSKII MODEL

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − g |ψ |2 ψ − Vextψ = 0

‣ It is a mean-field equation that can be formally derived to model 
dilute Bose gases in the limit of zero temperature

‣ It also model qualitatively well other superfluids like liquid Helium 
below the -point

‣ This model is nothing but a nonlinear Schroedinger equation, 
where  is a complex function describing the order 
parameter of the system

‣  is the mass of each boson,  is the reduced Planck’s constant,  
weight the effective binary collisions between the bosons,  is 
some external potential

λ

ψ(r, t)

m ℏ g
Vext



THE GROSS-PITAEVSKII MODEL

Using Madelung transformation                          and defining density 
and velocity as                   and                     , respectively, then                   

∂ρ
∂t

+ ∇ ⋅ (ρv) = 0

∂v
∂t

+ (v ⋅ ∇)v = ∇ − g
m (ρ − μ

g ) + 1
m

Vext + ℏ2

2m2

∇2 ρ

ρ

ψ = ρ exp(ıϕ)
ρ = m |ψ |2 v = ℏ/m∇ϕ

‣ The GP models an inviscid, barotropic, and irrotational fluid
‣ The last term of the second equation is the quantum pressure

ıℏ ∂ψ
∂t

+ ℏ2

2m
∇2ψ − (g |ψ |2 − μ)ψ − Vextψ = 0



TWO WEAKLY NONLINEAR LIMITS IN THE GP MODEL

‣ The de Broglie limit is the limit where no modes are 
macroscopically occupied (no strong condensate)

The dispersion relation for the 
perturbations is

ω(k) = ± ℏ
2m

|k |
ℏ2

2m
|k | + 2gρ0

m

‣ The Bogoliubov limit, where the system is described by a 
strong condensate with small density/phase fluctuations on top

The dispersion relation for the 
waves is

ω(k) = ℏ2

2m
|k |2

ρ0 = μ
g

, ξ = ℏ2/2gρ0 , c = gρ0/m2



THE GP MODEL WITH CLASSICAL IMPURITIES

We introduce active impurities in the GP model by considering them 
as classical-like particles with position and momentum            and 
identical masses      .
[Winiecki & C. Adams, EPL 52, 257 (2000); Shukla et al., PRA 94, 041602 (2016); Shukla et al., PRA 97, 013627 (2018)]

ıℏ ∂ψ
∂t

= − ℏ2

2m
∇2ψ + (g |ψ |2 − μ)ψ +

Np

∑
i=1

Vp( |x − qi | )ψ

Mp
··qi = − ∫ Vp( |x − qi | )∇ |ψ |2 dx −

Np

∑
i≠j

∇Vrep( |qi − qj | )

H = ∫ ℏ2

2m
|∇ψ |2 + g

2 |ψ |4 +
Np

∑
i=1

Vp( |x − q | ) |ψ |2 dx +
Np

∑
i=1

p2
i

2Mp
+ 1

2

Np

∑
i<j

Vrep( |qi − qj | )

N = ∫ |ψ |2 dx and P = ı
ℏ
2 ∫ (ψ ∇ψ* − ψ*∇ψ) dx +

Np

∑
i=1

pi

(qi, pi)
Mp

This model naturally conserves the number of impurities      , the energy (the 
Hamiltonian), the number of bosons and the total momentum:

NI



THE GP MODEL WITH CLASSICAL IMPURITIES

If a single impurity is considered, the model reads simply

ıℏ ∂ψ
∂t

= − ℏ2

2m
∇2ψ + (g |ψ |2 − μ)ψ + Vp( |x − q | )ψ

Mp
··q = − ∫ Vp( |x − q | )∇ |ψ |2 dx

‣ We imagine an impurity of size comparable with the healing length 

‣ The Bogoliubov density/phase waves, written in the fluid dynamical 
framework are

ξ

ρ = ρ0 + Aρ cos(kx − ωt)

vw =
ωAρ

kρ0
cos(kx − ωt)



The quantum fluid-impurity interaction is modelled using a 
phenomenological hat-shaped impurity potential 

THE GP MODEL WITH CLASSICAL IMPURITIES

‣ the quantum fluid heals at distance order of 
‣ an effective particle radius  is estimated by measuring the volume 

of the displaced fluid , here  is the steady 

state with one impurity
‣ non-dimensional impurity mass as , where 

‣ we set , ,  and , leading to 

ξ
āp > ap

πāp
2 = ∫ ( |ψ0 |2 − |ψp |2 ) dx ψp

ℳ = Mp/M0 M0 = ρ0πāp
2

V0 = 20μ ap = 1.5ξ Δa = 0.75ξ ηa = ξ āp = 3.1ξ

Vp(r) = V0
2 1 − tanh ( r2 − η2

a

4Δ2a )
[Shukla et al., PRA 94, 041602 (2016);
Giuriato et al., JPA 52, 305501 (2019);

Giuriato & Krstulovic, SciRep 9, 4839 (2019)] 0.0
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AN IMPURITY HIT BY A DENSITY/PHASE WAVE

‣ The impurity is 
initially steady

‣ The motion 
depends on the 
initial impurity-wave 
phase (  when 
the impurity is at 
the wave crest)

‣ Only a smaller 
fraction of the 
computational 
domain is shown 
here
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AN IMPURITY HIT BY A DENSITY/PHASE WAVE

‣ The impurity is 
initially steady

‣ The motion 
depends on the 
initial impurity-wave 
phase (  when 
the impurity is at 
the wave crest)

‣ Only a smaller 
fraction of the 
computational 
domain is shown 
here
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Sketch of the initial motion of 
the impurity versus the impurity 
wave phase : the impurity 
moves towards the region of 
lower pressure!
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STOKES DRIFT, THEORETICAL PREDICTIONS (1/2)

The impurity dynamics is driven by the effective equation

··q = ϵ
ω2

k
sin(kq − ωt) , where

ϵ = η
Aρ

ρ0
, with η = ( γ2Ca + γ1

γ2Ca + ℳ ),

Where we have introduced the added mass coefficient (  in 2D) and two 
phenomenological dimensionless parameters  and  which account for 
the presence of a healing layer at the particle boundary (values were obtained by fitting).

Ca = 1
γ1 ≃ 0.69 γ2 ≃ 0.25

Mp
··q = F = − ∫ Vp( |x − q | )∇ |ψ |2 dx ⟹ Mp

··q ≃ γ2CaM0
dvw
dt

q
− ··q + γ1M0

dvw
dt

q

‣ Impurity is a ball of radius 

‣ Passive particle in first approximation,  

‣ Small impurity compared to the density/phase wave, 

āp
ρ = ρp(ρ0 + ρw)/ρ0

kap ≪ 1



STOKES DRIFT, THEORETICAL PREDICTIONS (2/2)

vdrift = ⟨ ·q⟩t = − ω
k

ϵ cos(φ) + ω
k

ϵ2 (1 + 1
4 cos(2φ)) + .(ϵ3)

‣ Multiple-time scale expansion , given 
‣ After averaging over the fast timescale , the solution up to the second 

order is

q(t, ϵ) = Q(t, τ, ϵ) τ = ϵt
t

The impurity dynamics is driven by the effective equation

··q = ϵ
ω2

k
sin(kq − ωt) , where

ϵ = η
Aρ

ρ0
, with η = ( γ2Ca + γ1

γ2Ca + ℳ ),



STOKES DRIFT, COMPARISON WITH SIMULATIONS
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a) Time evolution of the 
impurity rescaled position 
(solid lines) for different 
impurity-wave phases. 
Dotted lines represent the 
drift prediction at the 
leading order.

b) Rescaled drift versus the impurity-wave 
phases for waves of wavelength  
(circles) and  (triangles); the dotted line 
is the prediction at the leading order.

λ = 128ξ
λ = 32ξ

vdrift = ⟨ ·q⟩t = − ω
k

ϵ cos(φ) + ω
k

ϵ2 (1 + 1
4 cos(2φ)) + .(ϵ3)



STOKES DRIFT, COMPARISON WITH SIMULATIONS
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Time evolution of the impurity 
rescaled position with drift 
parameter  for a) waves of different 
wavelength, b) waves of different 
amplitude and c) impurities of 
different mass. Dotted lines 
represent the drift prediction at the 
leading order. d) Time evolution of 
the impurity rescaled position with 
drift parameter  for waves of 
different wavelengths and same 
initial impurity-wave phase ; 
the second order prediction is 
displayed in dashed line.
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k
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4 cos(2φ)) + .(ϵ3)



SUMMARY AND CONCLUSIONS

‣ The direction of the motion depends on 
the initial impurity-wave phase
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‣ The Stoked drift prediction reads

‣ A classical impurity is 
transported by an inviscid 
quantum fluid due to density 
fluctuations

vdrift = ⟨ ·q⟩t = − ω
k

ϵ cos(φ) + ω
k

ϵ2 (1 + 1
4 cos(2φ)) + .(ϵ3)

‣ It is accurate at 
the first two 
orders



SUMMARY AND CONCLUSIONS

‣ This may alter the derivation of the Stokes drift which was based 
on sinusoidal density/phase waves
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‣ Notice that the drift measured in the 
numerical simulations is enhanced when 
the amplitude, hence the nonlinearity, of 
the density/phase wave becomes larger

‣ Note that at later 
time nonlinear solitary 
waves seem to form 
in the quantum fluid
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‣ Drift due to solitary waves?



SUMMARY AND CONCLUSIONS

Superfluidity was originally discovered in 19381 when a 4He
fluid cooled below a critical temperature flowed in a non-
classical way along a capillary2. This was the trigger for the

development of many experiments genuinely realized with
quantum matter, as with 3He fluids3 or ultracold atomic
vapors4,5. The superfluid behavior of mixed light-matter cavity
gases of exciton-polaritons was also extensively studied6,7, leading
to the emergent field of “quantum fluids of light”8. Before being
theoretically developed for cavity lasers9,10, the idea of a super-
fluid motion of light originates from pioneering studies in cavi-
tyless all-optical configurations11 in which the hydrodynamic
nucleation of quantized vortices past an obstacle when a laser
beam propagates in a bulk nonlinear medium was investigated12.
In such a cavityless geometry, the paraxial propagation of a
monochromatic optical field in a nonlinear medium may be
mapped onto a two-dimensional Gross-Pitaevskii-type evolution
of a quantum fluid of interacting photons in the plane transverse
to the propagation4. The intensity, the gradient of the phase and
the propagation constant of the optical field assume respectively
the roles of the density, the velocity, and the mass of the quantum
fluid. The photon–photon interactions are mediated by the
optical nonlinearity. It took almost twenty years for this idea to
spring up again13–16, driven by the emergence of advanced laser-
beam-shaping technologies allowing to precisely tailor both the
shape of the flow and the potential landscape.

The ways of tracking light superfluidity are manifold. Recently,
superfluid hydrodynamics of a fluid of light has been studied in a
nonlocal nonlinear liquid through the measurement of the dis-
persion relation of its elementary excitations17 and the detection
of a vortex nucleation in the wake of an obstacle18. The

stimulated emission of dispersive shock waves in nonlinear optics
was also studied in the context of light superfluidity13. However,
one of the most striking manifestations of superfluidity—which is
the ability of a fluid to move without friction19—has never been
directly observed in a cavityless nonlinear-optics platform. A
direct consequence of this feature is the absence of long-range
radiation in a slow fluid flow past a localized obstacle. In optical
terms, this corresponds to the absence of light diffraction from a
local modification of the underlying refractive index in the plane
transverse to the propagation. On the contrary, in the “frictional”,
nonsuperfluid regime, light becomes sensitive to such an index
modification and diffracts while hitting it.

Here, we report a direct observation of a superfluid regime
characterized by the absence of long-range radiation from the
obstacle. This regime is usually associated with the cancellation of
the drag force experienced by the obstacle, as studied for 4He20,
ultracold atomic gases21–25, or cavity exciton-polaritons26–29. In
our cavityless all-optical system, we extract on the one hand a
quantity corresponding to the optical analog of this force and
measure on the other hand the associated obstacle displacement.
For the first time, at least within the framework of fluids of light,
we observe that this displacement is nonzero in the nonsuperfluid
case and tends to vanish while reaching the superfluid regime.

Results
Hydrodynamics of light. We make use of a biased photo-
refractive crystal which is, thanks to its controllable nonlinear
optical response, convenient for probing the hydrodynamic
behavior of light13,30–32. As sketched in Fig. 1a and detailed in
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Fig. 1 Realization of a fluid of light in a propagating geometry and nonlinear response of the bulk crystal. a Sketch of the fluid of light (red beam) flowing
past an obstacle (green beam). The input velocity v of the fluid of light is proportional to the input angle θin. The sound velocity cs depends on the intensity
If of the red beam. b Blue curve. Calculated optical-index variation Δn with respect to a laser intensity I for the nonlinear photorefractive response of the
medium. Red dashed curve. Corresponding sound velocity cs. c Experimental setup. The green beam is shaped by the spatial light modulator (SLM) to
create a z-invariant optical defect acting as a localized obstacle in the transverse plane. The red beam is a large gaussian beam and creates the fluid of light.
If is controlled by a half-waveplate (HWP) and a polarizer (P). θin is tuned by rotating a mirror (M) imaged at the input of the crystal via a telescope. Both
are propagating simultaneously through a biased SBN photorefractive crystal and imaged on a sCMOS camera. The white light controls the saturation
intensity of the crystal
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Fig. 1c, a local drop of the optical index is photo-induced by a
narrow beam in the crystal and creates the obstacle. Simulta-
neously, a second, larger monochromatic beam is sent into the
crystal and creates the fluid of light. The propagation of the fluid-
of-light beam in the paraxial approximation is ruled by a two-
dimensional Gross-Pitaevskii-type equation (also known as a
nonlinear Schrödinger-type equation):

i∂zEf ¼ " 1
2nekf

∇2Ef " kfΔnðIobÞEf " kfΔnðIf ÞEf ð1Þ

The propagation coordinate z plays the role of time. The
transverse-plane coordinates r= (x, y) span the two-dimensional
space in which the fluid of light evolves. The propagation
constant nekf= ne × 2π/λf of the fluid-of-light beam propagating
in the crystal of refractive index ne is equivalent to a mass; the
associated Laplacian term describes light diffraction in the
transverse plane. The density of the fluid is given by the intensity
If / Efj j2. Its velocity corresponds to the gradient of the phase of
the optical field. At the input, it is simply given by v ’ θin=ne,
with θin the angle between the fluid-of-light beam and the z axis
(see Supplementary Note 1 for more details). The local refractive
index depletion Δn IobðrÞ½ &<0 is induced by the obstacle beam of
intensity Iob(r). The self-defocusing nonlinear contribution Δn
(If) < 0 to the total refractive index provides repulsive
photon–photon interactions and ensures robustness against
modulational instabilities33. From the latter, we define an analog
healing length ξ= nekf ´ kf ΔnðIf Þj j½ &"1=2, which corresponds to
the smallest length scale for intensity modulations, and an analog
sound velocity cs= (nekf × ξ)−1= ΔnðIf Þj j=ne½ &1=2 for the fluid of
light4,16 (see Supplementary Note 1). The photorefractive non-
linear response of the material, Δn(I), is plotted in blue in Fig. 1b
as a function of the laser intensity I (see the Methods section for
details). In the same figure, the red dashed curve represents the
speed of sound cs(I).

When the obstacle is infinitely weakly perturbing, Landau’s
criterion for superfluidity19 applies and the so-called Mach
number v/cs mediates the transition around v/cs= 1 from a

nonsuperfluid regime at large v/cs to a superfluid regime at low v/
cs. Generally this condition is not fulfilled and the actual critical
velocity is lower than the sound velocity cs4,34. This is the case in
the present work for two main reasons. First, we consider a
weakly but finite perturbing obstacle. It means a small variation
of the refractive index Δn[Iob(r)]=−2.2 × 10−4 and a radius of
6 μm comparable to ξ (see Methods section and Supplementary
Note 2). Note however that the perturbation is weak enough for
the transition not to be blurred by the emission of nonlinear
excitations like vortices or solitons. Second, remaining within
Landau’s picture, the speed of sound is here defined for If
measured at its maximum value, at z= 0, whereas the latter
naturally suffers from linear absorption and self-defocusing along
the z axis.

Probing the transition to superfluidity. The ratio v/cs is con-
trolled in the experiment both by the incidence angle θin and the
input intensity If of the fluid-of-light beam. Figure 2 presents
typical experimental results for the spatial distribution of the light
intensity observed at the output of the crystal for various input
conditions. Figure 2a displays the output spatial distributions
of intensity for different fluid velocities v at a fixed speed of
sound, cs= 3.2 × 10−3. This allows to vary v/cs from 0 to 3.1. As
v increases, diffraction appears in the transverse plane, and pro-
gressively manifests as a characteristic cone of fringes upstream
from the obstacle14,16,35. Another way to probe the transition is to
fix the transverse velocity v and to vary the sound velocity cs by
changing the intensity of the fluid-of-light beam. Although the
two ways of varying v/cs are not equivalent, as we shall discuss
later, the results shown in Fig. 2b are similar with the interference
pattern becoming more and more pronounced as v/cs increases.
Figure 2c represents the intensity distribution at the output of
the crystal for v/cs= 0.4. Long-range radiation upstream from the
obstacle is no longer present in this case, indicating a superfluid
motion of light. The lack of uniformity of the intensity upstream
from the obstacle is due to the intrinsic linear absorption of the
material29.
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Fig. 2 Spatial distribution of the output intensity of the fluid of light for various input conditions. The fluid of light flows from left to right. The white crosses
at the center of the images indicate the position of the obstacle. Each image is 330 × 330 μm2. a At a fixed input intensity If, the input angle θin of the beam
creating the fluid of light is tuned to vary the Mach number v/cs from 0 to 3.1. b Similarly, at a fixed input angle θin, If is progressively decreased to change
v/cs from 0.9 to 2.0. c For large If, the fluid of light is clearly in the superfluid regime at v/cs= 0.4. The remaining lack of uniformity upstream from the
obstacle is attributed to propagation losses due to linear absorption
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Superfluid motion and drag-force cancellation in a
fluid of light
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Quantum fluids of light merge many-body physics and nonlinear optics, revealing quantum

hydrodynamic features of light when it propagates in nonlinear media. One of the most

outstanding evidence of light behaving as an interacting fluid is its ability to carry itself as a

superfluid. Here, we report a direct experimental detection of the transition to superfluidity in

the flow of a fluid of light past an obstacle in a bulk nonlinear crystal. In this cavityless all-

optical system, we extract a direct optical analog of the drag force exerted by the fluid of light

and measure the associated displacement of the obstacle. Both quantities drop to zero in the

superfluid regime characterized by a suppression of long-range radiation from the obstacle.

The experimental capability to shape both the flow and the potential landscape paves the way

for simulation of quantum transport in complex systems.
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CAN WE TEST OUR PREDICTIONS IN AN 
EXPERIMENT?
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